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Abstract 
Thermo-mechanical phenomena are inherently related to composite materials, from 
manufacturing to service applications. Therefore, analytical and numerical models 
developed to simulate composite structural behaviour must satisfactorily account for 
thermal effects. Pagano’s solutions for 2D and 3D composite problems are usually the 
base for comparison of the different theories and finite elements developments, even 
when thermo-mechanical behaviour is assessed. Although a number of papers in the 
literature use numerical results based on this solution, the formulation accounting for 
temperature effects is not explicitly presented, nor discussed. The objective of the 
present paper is to present Pagano’s solution equations for a 2D case of a simply 
supported beam under a constant temperature field. Results obtained with the derived 
solution are discussed and compared against a 2D solid Finite Element Model (FEM) 
generated using a commercial software package. 

1. INTRODUCTION 
The development of laminate theories and elements to model composite structures 

has been the focus of many researches. The recent reviews by Sayyad and Ghugal [1], 
[2]  together present more than 800 references on the subject. These extensive studies 
present an interesting concluding remark for future research: there is a need of studying 
problems involving thermo-mechanical loads in laminated and sandwich composite 
structures.  

It is important to have reliable references to assess the capacities of newly developed 
models and theories, such as analytical solutions for 2D and 3D problems. Pagano’s 
works for beams [3] and plates [4] appear as the most common base of comparison for 
laminated structures. Despite its spread use, thermal effects are not accounted for on the 
original formulation.  

Recent works by Qian et al. present the analytical solutions for layered rectangular 
plates [5] and cylindrical arches [6] subjected to thermo-loads. These works solve the 
heat conduction equations for the layers, but a simpler approach is proposed in the 
present work. 
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The present paper presents the inclusion of a temperature field in Pagano’s solution 
for 2D composite laminates under cylindrical bending [3]. The derived formulation is 
compared to finite element commercial solutions using 2D elements and the results for 
this apparently simple problem are discussed, revealing an important conclusion 
concerning the modelling of composite structures using solid elements.  

2. FORMULATION 
The constitutive equation for an orthotropic material considering thermal effects is: 

 

(1) 

Where αi is the expansion coefficient in i-direction. The coordinate systems and 
layer numbering scheme are kept the same [3]. Assuming plane stress, σz = τxz = τxz = 0, 
the constitutive relations then become:   

 (2) 

  

  

Therefore the Rij coefficients of Pagano’s original work become equal to Sij in Eq. 
(2). The original paper by Pagano assumes plane strain, therefore the Rij coefficients 
values are different. The equations developed in the sequence are applicable also for 
plane strain, requiring only to change the definition of Rij. 

The equilibrium equations of the 2D problem are given as: 

 (3) 

The strain displacement relations are assumed according small displacement 
gradients hypothesis: 

 (4) 

The boundary conditions are the same considered on Pagano’s original work [3] for 
bending, a distributed load q on the upper surface and simply supported edges, 
according to Eq. (5). 

 
(5) 

  

  

Where q has a sinusoidal distribution given by: 

 
(6) 
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This shape of the load function is suitable for the solution of the differential 
equations. If one wants to represent a particular load distribution, it can be expanded as 
a Fourier series and Pagano’s solution is still applicable, as will be discussed in the next 
section.  

In order to include the temperature field the same sinusoidal representation is needed 
as the same resources of the Fourier series apply for more general fields. 

 (7) 

Although the temperature effects are included, an analogous solution for stresses to 
the one proposed in Pagano’s original work [3] applies: 

 (8) 

 
 

 
 

Using Eqs. (2), (4) and (8), we find that the new functions fi(y) are defined by the 
solution of the following ordinary differential equation: 

 
(9) 

Where: 

 
(10) 

This is almost the same equation of Pagano’s original work; moreover, the 
coefficients ai, bi and ci remain as previously defined [1]. The addition of thermal 
effects introduces a particular solution for the differential equation, where the 
homogeneous solution is kept equal to the previously defined by Pagano.  

 (11) 

The particular solution is given by: 

 

(12) 

There is a term dependent on αy but not on αx because the temperature distribution is 
assumed constant through y-direction, thus in the derivation of Eq. (9) the term related 
to αx vanishes. Therefore the solution for the stresses become: 

 (13) 

 

 

 
 

The displacements can be calculated by the integration of the constitutive relations. 
For the u displacement, from Eq. (2) : 
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(14) 

Substitution of Eqs. (8) and (11) and (12)  into Eq. (14) yields : 

 
(15) 

 

 

Integration in x-direction yields : 

 

(16) 

Proceeding analogously for the v displacement : 

 
(17) 

Substitution of Eqs. (8) and (11) and (12)  into Eq. (17) yields : 

 
(18) 

 
 

Integration in y-direction yields : 

 
(19) 

where  is the non-definite integral of fi(y). These expressions apply to any 
material that respect the assumed constitutive relations in Eq. (1).   

It is important to mention that in Pagano’s original work  [3], the p2 coefficient in Eq. 
(19) is not present in the expression for the isotropic and transversely vi displacement as 
it should. This point should be taken into consideretion when implementing Pagano’s 
solution. 
The homogeneous solution assumes the different shapes depending on lamina material 
properties. For orthotropic materials bi ≠ 0, then the fi(y) for the i-th layer is: 

 

(20) 

where mij  coefficients are given by: 

 

(21) 

 

 

The first and second derivatives, and the indefinite integral of the fi(y), required to 
calculate displacements, are given by: 
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(22) 

 

 

 

 

If the material of a layer is isotropic or transversely isotropic in xy plane, bi vanishes 
and the homogeneous solution becomes:  

 (23) 

with  m1 i = p(ai/ci)1/2. The first and second derivatives, and the indefinite integral of the 
fi(y), required to calculate displacements, are given by: 

 

(24) 

 

 

 

 

In order to determine the fi(y) coefficients A1i, A2i, A3i and A4i the boundary 
conditions must be considered, as well as the displacement and transverse stresses 
continuity. 

Pagano assumes simply supported edges for the 2D beam: 

 (25) 

  

This is automatically satisfied by Eq. (8). Therefore, there is still a total of 4m 
unknowns to be determined for a m layered laminate.  This is achieved solving the 
system given by the 4m equations from the remnant boundary conditions and continuity 
equations: 

 
 

 
(26) 
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3. NUMERICAL RESULTS 
In order to assess the results of the proposed formulation, a thick 0º/90º/0º laminate 

under constant temperature field ΔT = ΔT0 was evaluated. The beam dimensions are 
such that l/h = 4, where l = 1 m is the beam length and h = 0.25 m is the beam 
thickness. The results were compared to a commercial finite element solution using 2D 
plane stress four-noded bilinear elements using increasing number of elements per layer 
(ELPL). The 2 ELPL mesh used 120 elements (6 x 20), the 3 ELPL mesh used 288 
elements (9 x 32), the 4 ELPL mesh used 480 elements (12 x 40), the 5 ELPL mesh 
used 780 elements (15 x 52) and the 30 ELPL mesh used 32400 elements (90 x 360).  

In order to represent the constant temperature distribution, the Fourier expansion 
required is: 

 

(27) 

with ΔT0 = 1 K. 
As the representation is more accurate as more terms are considered, 3001 terms 

were considered. Also, as the sinusoidal expansion is problematic on the beam edges, 
the results were evaluated at x = 0.25l, where the boundary effects are not 
representative. 

The mechanical properties of the unidirectional lamina are [7]: 
EL = 150.0 GPa; ET = 10.0 GPa;  
νLT = 0.3 ; νTT = 0.48;  
GLT = 5.0 GPa; GTT = 3.378 GPa;  
αL = 0.139 10-6 K-1; αT = 9.0 10-6 K-1; 

where the superscript l denotes the longitudinal direction (fibre direction) and the t 
denotes the transverse direction. 

The finite element convergence is attested as 30ELPL mesh meets perfectly the 
Pagano’s solution. 
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Figure 1: Analytical solution and finite element results. 

It is common in composite problems to model structures using one element per layer 
[8], but by the results illustrated in Fig. 1 it is clear that, even for a simple problem such 
as the one evaluated, using few elements per layer is a poor approximation, especially 
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considering transverse strains and stresses. One can see that even using five elements 
per layer the value of σy stress, critical to delamination problems, is overestimated. 

4. CONCLUSIONS 
The present work is a straightforward development of Pagano’s solution for 2D 

solution of laminated composite beam under cylindrical bending including thermal-
effects and is a reliable reference for the development of composite structure theories 
and models. 

An important conclusion from the primary application of the model in contrast to 
traditional finite element modelling is that, in order to have accurate results concerning 
transverse strains and stresses, more than five elements per layer are required. 
Therefore, common strategies for modelling composite structures must be carefully 
studied. 
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