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Abstract 

Even though composite materials are ever more used in structural applications, mainly due 
to their excellent strength/weight ratio, this material class is also intrinsically anisotropic, a 
condition that must be properly considered in theirs macroscopic analyses. It is well known 
that angle-plies instead of unidirectional laminates are preferable for practical applications, 
but it is demonstrated here that in addition damage initiation around notch borders in angle-
plies requires smaller nominal stresses than in unidirectional laminates, due to the uncoupling 
of normal/shear effects. To do so, the Stroh formalism and the Classical Laminate Theory are 
applied toghether with Tsai-Wu, Puck, and LaRC05 resistance criteria to analytically evaluate 
stress concentration effects introduced by circular holes in large anisotropic plates, and to 
estimate damage initiation around the hole border.  
 

1. INTRODUCTION 
Composite materials are widely used in various industrial areas for demanding structural 

applications, mainly because they have low specific weight and high strength. However, this 
material class is intrinsically anisotropic, especially unidirectional laminates that are the focus 
of this study. Since most real structures must contain notches for functional and/or assembly 
purposes, which induce stress/strain concentration effects that are the major cause for damage 
initiation, they must be properly analysed by suitable design procedures. This paper aims to 
discuss the analytical evaluation of such effects. 

 

2. FUNDAMENTAL ELASTICITY SOLUTIONS 
Considering a linear and elastic angle-ply laminate, the constitutive relation for its P-th ply 

in global coordinates is defined by [1] 
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 ( ) ( ) ( )[ ] [ ] [ ]g g g
ij P i jkl P kl Pss e=                                                                                                     (1)  

 
where ( )g

ijs , ( )g
ijkls  and ( )g

kle  are the stress, stiffness and strain tensors defined in global 
coordinates. 

Using the Kirchhoff-Love kinematical assumption, the strain tensor can be defined as 
 
 3

( ) ( ) ( ) ( )g g g g
ij i j i jxe e k= +               (2) 

 
where ( )g

ije  is the midplane strain tensor and ( )g
ijk  is the curvature.  

According to the Classical Laminate Theory (CLT), the forces and moments per unit of 
lengths are computed by the following equations 
 
 ( ) ( ) ( ) ( ) ( )g g g g g

ij i jkl kl i jkl klN A Be k= +             (3)  

 ( ) ( ) ( ) ( ) ( )g g g g g
ij i jkl kl i jkl klM B De k= +             (4) 

 
where 3

( ) ( ) ( )[ ]g g g
ij i j PN dxs= ∫ , 3 3

( ) ( ) ( ) ( )[ ]g g g g
ij i j PM x dxs= ∫ , ( ) ( ) ( )

3
g g g

ijkl i jklA s dx= ò , ( ) ( ) ( ) ( )
3 3

g g g g
ijkl i jklB s x dx= ò and 

( ) ( ) ( ) ( )2
3 3( )g g g g

ijkl i jklD s x dx= ò . Restricting this study to symmetric laminates subjected to in-plane 

forces, ( ) 0g
ijklB =  and 0( )g

ijM = . Hence, the laminate constitutive equation is 
 
 ( ) ( ) ( )g g g

ij i jkl klN A e=              (5) 
 

Considering the average stress through the plate thickness, the average stiffness tensor is 
computed as 
 
 ( ) ( ) /g g

ijkl i jkls A t=               (6) 
 
where t  is the plate thickness. 

Once the equivalent elastic properties of the laminate are obtained by the CLT, to analyze  
stress concentration effects induced by a circular hole, it is necessary to evaluate the stress 
distribution along the hole border. Using the Stroh formalism, a very useul tool for the theory 
elasticity of anisotropic materials, the hoop stress along the hole border is written as [2] 
 
 ( ) ( )( ) ( ) ( ) ( ) ( )

11 1 1 2 3 1 2 1 1 3 2
l l l l ls = + - -i iG G G Gt t t t          (7) 

 

where 1 1 0 0é ù= ê úë ûi , 2 0 1 0é ù= ê úë ûi , ( ) ( )
1 11 12 0

Tg gt é ù= s sê úë û , ( ) ( )
2 21 22 0

Tg gt é ù= s sê úë û , 

( ) ( ) ( ) 1
1 1 3

Tl l l -é ù= -ê úë ûG N N SL , and ( ) ( ) 1
3 3
l l -= -G N L . ( )

1
lN  and ( )

3
lN  are known as the fundamental 

elasticity matrices, and S and L  are the Barnet-Lothe tensors. These quantities are defined as 
  

 [ ] [ ]1( ) ( )( )
1

Tl ll -
= - T RN             (8) 

 [ ] [ ]1( ) ( ) ( ) ( ) ( )
3

Tl l l l l-
= - -N R T R Q            (9) 
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 ( )
10

1 l d
p

qp= òS N            (10) 

 ( )
30

1 lL d
p

qp= ò N            (11) 

 
where ( )

1 1
g

ik i kQ s= , ( )
1 2
g

ik i kR s= , ( )
2 2
g

ik i kT s=  and  
 
 ( )( ) 2 2cos sin cos sinl Tq q q q= + + +Q Q R R T        (12) 
 ( )( ) 2 2cos sin cos sinl Tq q q q= + - +R R T Q R        (13) 
 ( )( ) 2 2cos sin cos sinl Tq q q q= - + +T T R R Q         (14)  

 

3. FAILURE CRITERIA 
According to Soden et al. [3], the models that better matched with experimental results 

from the worldwide failure exercise known as WWFE-1 (a round-robin to experimentally 
evaluate the modeling of composite failures) were Tsai-Wu, Puck, and Cuntze. Among these, 
Cuntze’s model does not need to be discussed here because for damage initiation, this paper 
aim, it is quite similar to Puck’s model. Kaddour and Hinton [4] pointed out that Carrere’s 
and the LaRC05 models generated the better predictions for the data obtained in the following 
WWFE-II. However, just the LaRC05 is studied here, because Carrere’s model includes 
micromechanics approaches, which are not within this paper scope. Thus, Tsai-Wu, Puck, and 
LaRC05 failure criteria are presented next, to be later used to estimate the strength of 
unnotched and notched laminated plates. Note that despite Puck and LaRC05 are able to 
indicate which constituint fails, they do not consider any explicit micromechanical approach. 

3.1 Tsai-Wu Criterion 
Tsai and Wu [5] proposed a well known and widely used generic failure criterion for 

anisotropic materials based on a polynomial function which is simple to implement and 
compute, albeit it does not distinguish failure mechanisms. For plane stress conditions, their 
damage function is described by 
 

   
22 2

*11 22 12 11 22
1122 11 22

11 11 22 22 12 11 11 22 2211 11 22 22

1 1 1 1
TW t c t c t c t ct c t c
f a

S S S S S S S S SS S S S

s s s s s
s s

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷= + + + + - + -ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç çè ø è ø è ø
   (15) 

 
where *

1122 1a = -  is recommended in absence of experimental data for proper calibration. For 
Eq.(15) and for all the other models, failure is assumed to take place when their damage 
functions equal 1. 

3.2 Puck Criterion 
The Puck criterion [6] use different approaches to model different failure mechanisms in 

composite materials, recognizing the difference between fiber and matrix failures, as well as 
different tension and compression effects. For fibers under tensile loads, using the maximum 
normal stress theory as a basis, his damage function is given by 
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 ( , ) ( )1
11 12 12 22( )

11 1

1f t f
P ft f

E
f m

S E
s n n s

æ ö÷ç ÷ç ÷= + -ç ÷ç ÷÷çè ø
        (16) 

 
where 1.3fm =  is recommended for glass fibers.  

Considering the shear influence on the fibers instability when they are compressed, the 
function to describe fiber damage under compression is  
 

 
2

( , ) ( )1 12
11 12 12 22( )

1211 1

1 10f c f
P fc f

E
f m

GS E

s
s n n s

æ ö æ ö÷ç ÷ç÷ç ÷ç÷= + - + ÷ç ç÷ ÷ç ÷ ç ÷÷ç è øè ø
      (17) 

 
For modeling matrix failures, the key-point of Puck’s model is to identify and to evaluate 

damage on a critical plane, similar to the Coulomb-Mohr criterion. For plane stress, three 
different failure modes are modelled: mode A, when the matrix is in tension and the critical 
plane is parallel to the fibers; mode B, that has the same critical plane than mode A but the 
matrix is compressed; and mode C, where the matrix is also in compression, however the 
critical plane inclination is (23) 2 1/ 2

12 23 12 12 22cos{ [(1/ 2(1 ))(( / ) 1)] }c
C a p S Sg s s= + + , where for 

glass fibers 12 0.25cp =  and (23) 1/ 2
23 12 12 12 22 12/ 2 [(1 2 / ) 1]c c cS S p p S S= + - . The damage functions 

for theses modes are 

 
2 2

( , ) 12 22 12 22 11
22

12 22 12 22 11

2 1
t

m A
P t t

p
f

S S S S X

s s s s
s

æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷= + + - +ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è ø
      (18) 

 
2

( , ) 12 12 11
22

12 12 11

2
c

m B
P

p
f

S S X

s s
s

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷= + +ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
         (19) 

 
2 2

( , ) 212 22 12 11
22(23)

12 23 12 11

cos sin cos
2 cos

c
m C c c c

P c
p

f
S S S X

s g s g g s
s g

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷= + + +ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç çè ø è ø è ø
    (20) 

 
where 12 0.30tp =  is recommended for glass fiber, 6 8n< <  ( 8n =  is adopted here) and 

11 111.1 tX S=  if 11 0s ³  or 11 111.1 cX S= -  otherwise. 

3.3 LaRC05 Criterion 
This failure criterion has been developed since 2000’s and has been proven to be able to 

generate quite accurate predictions. Despite Pinho et al. [7] data indicates a nonlinear 
behavior of the transverse elastic and of the shear moduli, both are assumed linear here, since 
just initial damage is analyzed and these properties becomes nonlinear for higher strain levels.  

For the matrix failure, the Puck model is used as a basis, mainly because of its use of a 
critical plane concept. Therefore, just one damage equation is used, but it requires a critical 
plane search. The matrix damage function is 
 

 
{ } 22 2 2

22( ) 12 22
2 (23) 2

12 22 23 22 22

max 0, coscos sin cos

cos cos
m

L t
L T

f
S b S b S

s gs g s g g

s g s g

æ öæ ö æ ö ÷ç ÷÷ ÷ç ç ç ÷÷ ÷ç ç ç ÷÷ ÷= + +ç ç ç ÷÷ ÷ç ç ç ÷÷ ÷÷ ÷ç - ç - ç ÷è ø è ø ÷çè ø
   (21) 
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where Lb  and Tb  are parameters that can be experimentally calibrated, g  is the critical plane 

angle, and (23)
23S  is the shear strength on this plane. According to Dávila et al. [8], 0.082Lb =  

and 0 53q = ° , used in 01 tan 2Tb q= -  and ( )(23)
23 22 0 0 0 0cos sin cos tan 2cS S q q q q= + , are 

good approximations if no experimental data is available. 
For modeling the failure of fibers under tensile loads, the maximum normal stress theory is 

assumed valid, resulting on the following damage function 
 
 ( , )

11 11
f t t

Lf S= s            (22) 
 

The main advantage of this model when compared to the Puck’s one is the modelling of 
fibers failure when these are compressed, because it considers in a more sophisticated way the 
fibers instability. If all the fibers are initially aligned, a rotation f  along the plane 2 3x x-  is 
necessary to search the critical plane. Once this procedures is finished, the stress components 
in this plane are computed as ( )

i j ik j l kl
fs l l s= . Nevertheless, an initial misalignment of the 

fibers is an intrinsic issue for real manufacturing processes, and must be considered in failure 
analyses, because it may have a major contribution for instability failures due to the fibers 
initial deflection. Hence, in the presence of an initial misalignment angle 0j , the total 
misalignment is computed considering the initial value induces the shear contribution:  
 
 ( ) ( )

12 0 12( ) 2 missign fj s j e= +           (23) 
where  
 

 ( )
( )
( )( )

12 11 12 11

0 11 12
12 11

1 1 4
1 tan

2

c c
L

c

c
L

S S b S S
S G a

S S b
j

é ùæ ö÷çê ú- - + ÷ç ÷çê úè øê ú@ - ê ú+ê ú
ê úë û

                (24) 

Once the misalignment direction is obtained, the stress components in this planes are 
computed with the transformation ( ) ( )mis

ij ik j l kl
fs l l s= . At last, the damage function of the fibers 

in compression is defined by 
 

{ } 22 2 ( )( ) ( )
22( , ) 12 23

( ) (23) ( )
12 22 23 22 22

max 0, mismis mis
f c

L mis mis t
L T

f
S b S b S

ss s

s s

æ öæ ö æ ö ÷ç ÷÷ ÷ç ç ç ÷÷ ÷ç ç ç ÷÷ ÷= + +ç ç ç ÷÷ ÷ç ç ç ÷÷ ÷÷ ÷ç - ç - ç ÷è ø è ø ÷çè ø
     (25) 

 

4. RESULTS AND DISCUSSION 
Considering the unidirectional [ ]nα  and angle-ply [ ]± nsα  laminates, their tensile ( t

FPFS ( )α ) 
and compressive ( c

FPFS ( )α ) strength variations according to the fiber-to-load angles predicted 
by Tsai-Wu, Puck, and LaRC05 criteria are plotted in Fig. 1 for an unnotched plate. Notice 
the very high effect of the fiber angle with respect to the load direction on the laminate 
strength predicted by all criteria, a major issue when dealing with laminates. This is the main 
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reason for their peculiar stress concentration behavior, studied next. Figure 1 illustrates how 
matrix failure usually is the dominant mechanism. For the single layered laminate, the tensile 
strength decrease more than 80% when the fibers angle α changes from 0o to 15o, a major 
effect that highlights well how directional such composite materials are.   

 

  
Figure 1. Variation of the unnotched laminate plate FPF strength prediction as function of the 

fiber orientation angle α with respect to the uniaxial load direction, t t
FPF 11S ( ) Sα  and 

c c
FPF 11S ( ) Sα , where t

11S  and c
11S  are the reference tensile and compressive strengths 

measured when the fibers are aligned with the load, i.e. when α = 0. 
 
This simple analysis, still without considering any stress concentration effects, helps to 

understand the results presented next. In particular, those that show that the critical point 
along a circular hole border in anisotropic plates in general is not the point where the stress 
concentration peaks occur. Instead, it is the point that maximizes the ratio between the local 
stress and the smallest (anisotropic) material strength along the notch border. This usually is a 
major issue when designing notched components made of anisotropic materials, since their 
behaviour can be very different from the well-known behaviour of notched isotropic 
materials.  

Additionally, the LaRC05 model indicated that the strength of angle-ply laminates may be 
smaller than that of unidirectional laminates with the same angle α. This conclusion applies 
for fiber-to-load angle α between 45º and 60º, and it is a consequence of the shear influence in 
the longitudinal compression resistance modelled by the LaRCO05 criterion.  

First, using the CLT, it is possible to conclude that angle-ply laminates do not couple shear 
and normal stress and strains, because the elements responsible for this physical coupling on 
the equivalent stiffness and equivalent compliance tensors are null, unlike what happens for 
[ ]nα  if 0 , 90≠ ° ± °α , a result that is valid for any angle-ply laminate. Notice that [ ]+ nα  and 
[ ]− nα  are two different laminates, and that [ ]± nsα  is one laminate that contains laminas with 
both angles, +α  and −α . 

First ply failure (FPF) notched strength predictions for single-layered and angle-ply 
laminates are presented in Fig. 2. Clearly, the [0]n  and [90]n  laminates must be equivalent to 
[ 0]± ns  and [ 90]± ns , respectively, but their strength variation according to the fiber-to-load angle 
α  have a significantly different behavior. For tension or for compression, the strength curves 
have a smoother shape for single layered laminates, unlike what happens for un-notched 
plates. Figure 1 shows that in notch-free laminates, the angle-plies strength variations are 
smoother. These results are justified by the vanishing effect of the normal-shear coupling in 
equivalent homogeneous materials, where the stress concentration is maximized, e.g. for [α]n 
where the stress concentration is maximized if 0 90,= ° ± °α .  
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Figure 2. Prediction of t t

FPFS S11  and c c
FPFS S11 for the holed orthotropic plate FPF strength 

under tension and under compression loads by the 3 failure criteria, for angle-ply 
laminates, as a function of the fibers-to-load angle α. 

While the stress concentration around the border of a circular hole in isotropic plates with 
uniaxial load ranges between -1 and 3 for isotropic materials, for the single-layered laminate 
studied it ranges between -4 and 7 [9]. For angle-ply laminates the stress concentration effect 
is even more pronounced. By this fact, the ration between notched and unnotched strengths 
presented in Fig. 2 is smaller than 10% for all cases.  

 

5. CONCLUSIONS 
This paper presented a brief review of some theoretical approaches for stress analyses of 

anisotropic materials, in particular laminated composites (Stroh Formalism and CLT). Three 
failure theories are studied here, using as basis the WWFE results and their recommendations: 
Tsai-Wu, Puck, and LaRC05. Then these techniques are used to predict the behaviour of 
simple notched plates. Large plates made by single layered unidirectional laminates with 
circular holes had a FPF strength decrease estimation of more than 95% and 90% for uniaxial 
tension and compression, respectively. These results, which differ significantly from the 
behaviour of isotropic plates, become even more pronounced depending of the fiber 
orientation. Notched angle-ply laminates have a smaller FPF strength for most of the cases 
analyzed, on the contrary of unnotched plates. For notched plates, the strength of symmetric 
angle-ply laminates is usually smaller than for unidirectional laminate due to the increase of 
stress concentration effects, what is the opposite of the observed for unnotched plates.  
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