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Abstract 
The present work aims to find the optimum distribution of a certain amount of matrix around a 
pack of fibers, which is the representative volume element of a bundle of carbon nanotubes, in 
order to maximize a linear combination of the effective properties of the media. The 
homogenization by asymptotic expansion is used to find the effective properties and a topology 
optimization procedure is conducted to find the optimal material distribution. In the adopted 
Representative Volume Element (RVE), the fibers are fixed in the domain, and the optimization 
is performed only at matrix, whose properties are parameterized by the Solid Isotropic Material 
with Penalization (SIMP) method. Three distinct linear combinations of the components of the 
fourth order stiffness tensor are chosen, as well as three distinct admissible volume fractions for 
the matrix. The numerical results are presented by both the optimal material distributions in the 
RVEs and the convergence plots of the objective functions. The results show which regions of the 
RVE play a significant role for the effective properties of the composite, and may be used for a 
careful manufacturing process guide.  
KEYWORDS: Topology optimization, Fiber reinforced composites, Imperfect adhesion, carbon 
nanotube bundles. 

1. INTRODUCTION 
Fiber reinforced composites play an important role in aeronautical and aerospace industries, 

due to its excellent specific properties. However, the behaviour of this kind of material is not 
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completely understood and the manufacturing processes are often unreliable. A new state-of-the-
art composite like material used as reinforcing component, developed in parallel by several 
research groups in the past years, consists of millions of bundles of carbon nanotubes. This kind 
of material is very flexible, have an easy handling and have mechanical and electrical properties 
that can be tuned by production conditions [1]. Despite of the advantages, the mechanical, 
electrical and thermal properties of the bundles carbon nanotubes are highly affected by the 
densification and polymer impregnation [2-3].  

Thus, the objective of this work lies on analyzing the effect of matrix impregnation on the 
effective mechanical properties of the carbon nanotubes bundles. A topology optimization 
approach is used in order to obtain the optimum distribution of matrix around a pack of fibers, 
given a pre-defined volume of matrix, in order to maximize a linear combination of the components 
of the homogenized fourth order stiffness tensor of the media. The concept of representative 
volume element (RVE) is used to represent a periodic unidirectional fiber reinforced composite, 
playing the role of the bundles. The homogenization by asymptotic expansion is used in order to 
obtain the fourth order stiffness tensor of the media and the finite element method is used to 
discretize the RVE domain and solve the equilibrium problems in the microscale. The topology 
optimization is chosen since it is the most general form of structural optimization. The fibers are 
kept fixed in the RVE and the optimization is performed only in the matrix. The SIMP (Solid 
Isotropic Material with Penalization) is used to parameterize the matrix properties and the 
Optimality Criteria is used to solve the optimization problem. The optimization problem is stated 
as the maximization of a linear combination of the components of the fourth order stiffness tensor 
subjected to a volume constraint. 

2. FORMULATION 

2.1 Homogenization by asymptotic expansion 
For the determination of the effective properties of the composite, the well-known 

homogenization by asymptotic expansion method is used. This method is based on the assumption 
that a representative volume element (RVE) represents the entire domain. In other words, there is 
a small part of the domain in which one can find a pattern of repetition.  

In the linear elasticity context, three basic considerations are adopted. The first one requires 
that the displacement field of the media can be written as an asymptotic expansion. The second 
one is that two coordinate scales are used in the analysis, one at the macroscale level (or domain 
scale) and the other at the microscale level (or RVE scale). These coordinate systems are related 
to each other by a small scalar, that in the limit tends to zero, rendering both scales in different 
orders of magnitude. The third one is that kinematic constraints are imposed to the boundaries of 
the RVE, imposing that the displacement field must have the same values on opposite faces of the 
RVE (periodicity). 

The mathematical background is well established in literature [4-5] and states that the effective 
fourth order stiffness tensor of the heterogeneous media can be found by 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 (𝒙𝒙) = � �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
𝜕𝜕𝜒𝜒𝑝𝑝𝑘𝑘𝑘𝑘

𝜕𝜕𝑦𝑦𝑞𝑞
�

𝑌𝑌
𝑑𝑑𝑑𝑑 

(1) 

where 𝒙𝒙 is the coordinate vector in the macroscale, 𝒚𝒚 is the coordinate vector in the microscale, 𝒀𝒀 
is the vector with the dimensions of the RVE and  𝝌𝝌𝑘𝑘𝑘𝑘 is the characteristic periodic displacement 
field of the RVE, given by the solution of the equilibrium equation 
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(2) 

  
where 𝒗𝒗 is a virtual displacement. The RVE for the present work is shown in figure 1, playing the 
role of a representative volume of the fiber bundles. The finite element method is used to solve 
Eq. 2. 

 

Figure 1: Illustration of Carbon Nano Tubes Fibers (CNTF) tight and loose packing and RVE 
model (adapted from [1]) 

2.2 Material parameterization 
The main purpose of topology optimization is to determine the distribution of a set of materials 

within a certain fixed domain, in order to extremize an objective function, subjected to a set of 
constraints [6]. This is the most general form of structural optimization, allowing voids and new 
boundaries to be added to structure. 

This work aims to find the optimal matrix distribution in the RVE in order to maximize a linear 
combination of the components of the homogenized fourth order stiffness tensor. A volume 
constraint is adopted in the matrix region, thus, a maximum matrix volume is allowed in the 
optimization procedure. 

The design variables, for this case, play the role of the distribution of material. In a finite 
element method context, for each element of the mesh, a design variable, as known as relative-
density, is associated to. If the value of the design variable is 0, there is no material associated to 
this particular region of the domain, conversely, if the value of the design variable is 1, this region 
contains material. 

Let the RVE domain Ω to be formed by two sub domains, the fiber domain Ω𝑓𝑓 and the matrix 
domain Ω𝑚𝑚. In addition, the matrix domain Ω𝑚𝑚 is divided in two sub domains, the domain in which 
there is material Ω𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and the domain in which there is no material, Ω/Ω𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.It is considered that 
the fiber domain is fixed, and it is intended to find the distribution of material in Ω𝑚𝑚 such that 
extremizes an objective function. It is desired to use the parameterization 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙) = �
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓 , 𝒙𝒙 ∈ Ω𝑓𝑓

𝜅𝜅(𝒙𝒙)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 , 𝒙𝒙 ∈ Ω𝑚𝑚
, 

(3) 

Model
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where 𝑪𝑪 is the fourth order stiffness tensor in each point of the domain Ω, 𝑪𝑪𝑓𝑓 and 𝑪𝑪𝑚𝑚 are, 
respectively, the properties of fiber and matrix and 𝜅𝜅 is a discrete function, defined in all matrix 
domain, given by 

𝜅𝜅(𝒙𝒙) = �1, 𝒙𝒙 ∈ Ω𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

0, 𝒙𝒙 ∈ Ω/Ω𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
(4) 

This approach is ill-posed, leading to numerical problems due to the non-existence of a solution, 
besides the fact that the function is non-differentiable. Therefore, a relaxation of the discrete 
problem is necessary, which allows the design variables to assume intermediary values between 0 
and 1. However, at the end of the optimization procedure, it is desired that only discrete values 
remain. The SIMP method [7] is used in order to parameterize the matrix properties. Thus, the 
material properties in every point of domain are given by 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙) = �
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓 , 𝒙𝒙 ∈ Ω𝑓𝑓

𝜌𝜌(𝒙𝒙)𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 , 𝒙𝒙 ∈ Ω𝑚𝑚
 

(5) 

where 𝝆𝝆 is the vector containing the relative densities, or design variables, in every point of the 
matrix domain Ωm. The relative densities are interpolated between 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜌𝜌 = 0) = 0 and 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜌𝜌 = 1) = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 , and it is required that, at the end of the optimization procedure, all relative 
densities assume either 0 or 1 as their values. Also, the penalization factor is chosen as 𝑃𝑃 > 1 in 
order to render intermediate density values unfavorable, since the stiffness obtained is relatively 
small in comparison to the volume, or amount of material, involved. 

2.3 Definition of the problem 
The domain is divided in finite elements and, for every element representing the matrix, it is 

associated a design variable 𝜌𝜌𝑒𝑒, as known as the relative density. The objective function, Φ, is 
defined as the linear combination of each independent component of the homogenized fourth order 
stiffness tensor, weighted by scalars. In addition, a volume constraint is adopted, as well as side 
constraints applied directly in the design variables. Thus, the optimization problem is stated as 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Φ(𝝆𝝆) = �𝛼𝛼𝑖𝑖𝐶𝐶𝑖𝑖𝐻𝐻
21

𝑖𝑖=1

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �𝜌𝜌𝑒𝑒𝑣𝑣𝑒𝑒 ≤ 𝑉𝑉𝑚𝑚,          𝜌𝜌𝑒𝑒 ∈  Ω𝑚𝑚

𝑛𝑛

𝑒𝑒=1

 

                      𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝜌𝜌𝑒𝑒 ≤ 1.0 
 

(6) 

where 𝐶𝐶𝑖𝑖𝐻𝐻 is the 𝑖𝑖-th independent component of the homogenized fourth order stiffness tensor, 𝛼𝛼𝑖𝑖 
is an arbitrary scalar associated to it, 𝑉𝑉𝑚𝑚 is the maximum allowed matrix volume, 𝜌𝜌𝑒𝑒 and 𝑣𝑣𝑒𝑒 are, 
respectively, the relative density and the volume associated to the 𝑒𝑒-th element of the mesh and 
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum allowed value for the 𝑒𝑒-th design variable, chosen in order to avoid numerical 
problems in the solution of the linear systems.  

Due to the high number of design variables associated to a topology optimization procedure, a 
gradient-based optimization procedure is chosen. In addition, the computational effort associated 
to the equilibrium is high, thus, the derivatives of both objective function and constraint are 
obtained analytically. Several methods can be used in order to solve a topology optimization 
problem and, at this work, the Optimality Criterion (OC) [6] is used. 
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3. RESULTS AND DISCUSSION 
An in-house software, written in Julia Language [8] containing all stages of the algorithm was 

developed. The visualization of topologies is performed in the software Gmsh [9]. 
For all cases, a unitary RVE is used, and the radius of each fiber is equal to 17% of RVE length, 

rendering the volume fraction of fibres in the RVE of approximately 36%. In addition, the domain 
shown in figure 1, which reinforcement is in the direction 3, is discretized by 60×60×60 regular 
trilinear isoparametric hexahedral elements with incompatible modes. The mechanical properties 
of fiber (S-glass fiber) and matrix (steel alloy) used in the simulations are shown in table 1. It is 
worth mentioning that if the mechanical properties are changed during the analysis, the qualitative 
results remain the same. Thus, the procedure can be extended to an analysis of the carbon nanotube 
bundle composites. 

Table 1: Mechanical properties 
               𝐸𝐸𝑓𝑓 (GPa) 𝐸𝐸𝑚𝑚 (GPa) 𝜈𝜈𝑓𝑓 𝜈𝜈𝑚𝑚 

303.0 110.3 0.21 0.3 

 
A filtering radius of 0.07 is used, applied directly to the gradient of the objective function [10] 

and the minimum density adopted is equal to 10−3. Three cases were chosen for the study. The 
objective functions of each one of the cases are given by, respectively, by 
Φ = 𝐶𝐶1111𝐻𝐻 + 𝐶𝐶2222𝐻𝐻 ,  Φ = 𝐶𝐶1212𝐻𝐻   and  Φ = 𝐶𝐶1313𝐻𝐻 + 𝐶𝐶2323𝐻𝐻 .  

In addition, for each one of the cases, matrix volume fractions of 0.25, 0.50 and 0.75 were used. 
Three optimization problems are defined by using equation (6) alongside the three objective 
functions defined above and, for each one of the optimizations problems, three distinct volume 
fractions are used. Thus, 9 optimizations are carried out. 

The initial distribution of relative densities in the matrix is homogeneous and with the value 
equal to the value of the volume constraint adopted in the procedure, thus, the volume constraint 
is satisfied in all iterations. Figures 2 to 4 show the convergence analysis for, respectively, cases 
1, 2 and 3, for a volume fraction of 0.25. It can be noticed from figures 2 to 4 that all cases converge 
to a certain value of the objective function. In addition, the topologies obtained are mostly 0-1, in 
other words, voids and material.  

 

 
Figure 2: Convergence analysis of the objective function for case 1. Matrix volume fraction of 

0.25. Topologies obtained for iterations 10, 20, 30, 50 and 100. 
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Figure 3: Convergence analysis of the objective function for case 2. Matrix volume fraction of 

0.25. Topologies obtained for iterations 10, 20, 30, 50 and 100. 

 
Figure 4: Convergence analysis of the objective function for case 3. Matrix volume fraction of 

0.25. Topologies obtained for iterations 10, 20, 30, 50 and 100. 

Only a few elements have intermediary relative densities in the final topologies. This behaviour 
is expected and shows that the approach adopted is consistent and that the filtering scheme is 
effective. Figures 5 to 7 show the optimal topologies obtained for, respectively, cases 1, 2 and 3, 
for volume fractions of, respectively, 0.25, 0.50 and 0.75. 

 
 

 
Figure 5: Optimal RVEs obtained for case 1. Matrix Volume fractions of 0.25, 0.50 and 0.75, 

respectively. 
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Figure 6: Optimal RVEs obtained for case 2. Matrix Volume fractions of 0.25, 0.50 and 0.75, 

respectively. 
 

 
Figure 7: Optimal RVEs obtained for case 3. Matrix Volume fractions of 0.25, 0.50 and 0.75, 

respectively. 

From figures 5 to 7 it can be seen the optimal distribution of matrix around the pack of fibers 
that maximizes the linear combination of the components of the homogenized fourth order stiffness 
tensor. The left-hand side, middle and right-hand side topologies in figures 5-7 represent, 
respectively, the optimal solutions for 25%, 50% and 75% of matrix. In the topologies with a 
relatively low volume of matrix, one can see the regions where the matrix has the most influence 
on the components of the effective stiffness tensor. For a low volume fraction, the algorithm adds 
material in crucial regions to maximize the objective function, shown as the dark gray regions. In 
the topologies with a relatively high volume of matrix, one can see the regions with the less 
influence in the effective properties of the media. In the topologies with a high volume fraction of 
matrix the white elements (lack of material) represent the regions that affect less the mechanical 
properties of the media. 

Table 2 shows the numerical optimal results. It can be seen that a non-linear relation between 
the matrix volume fraction and the objective function is obtained. This is expected, since that for 
low volume fractions, only the most significant regions will have material and, as the volume 
fraction increases, regions that not play a significant role for the specific objective function will 
contain material as well. 

 
Table 2: Optimal Solutions 

 Φ = 𝐶𝐶1111𝐻𝐻 + 𝐶𝐶2222𝐻𝐻  
 

Φ = 𝐶𝐶1212𝐻𝐻  
 

Φ = 𝐶𝐶1313𝐻𝐻 + 𝐶𝐶2323𝐻𝐻  
  Case 1 Case 2 Case 3 

𝑉𝑉𝑚𝑚 = 0.25 116.2 14.8 43.3 

𝑉𝑉𝑚𝑚 = 0.50 186.7 29.6 68.8 

𝑉𝑉𝑚𝑚 = 0.75 288.1 41.8 93.6 
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4. CONCLUSIONS 
In this work, numerical simulations regarding the behaviour of unidirectional fiber reinforced 

composites were carried out. A topology optimization approach was used in order to find the 
optimal distribution of a certain amount of matrix around a pack of fibers within a RVE. The results 
show a great consistency and that the implemented algorithm is very efficient. Also, this work can 
be seen as a guide in a controlled manufacturing process, since it shows the regions of matrix that 
most affect the effective properties of the media. 

It can also be noticed that any combination of the components of the fourth order stiffness tensor 
can be used in the optimization. Thus, depending on the application, this approach can be used to 
optimize other linear combinations of the tensor. In time, this approach can be easily extended to 
other effective physical properties, such as thermal and electrical conductivity in composites. With 
the optimum topologies, an analysis regarding the effect of the matrix impregnation in a 
nanocomposite bundle can be made. Considering the effective fourth order tensor of the media, 
the loss of the properties can be foreseen with regard to the matrix impregnation and its distribution 
around the pack of fibers. 
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