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Abstract 
Filament Winding (FW) is a manufacturing process for composite materials that winds continuous 
tows on the surface of a mandrel at a predefined trajectory. This process is usually characterized 
by forward and backward strokes of a delivery eye that places the tow on the mandrel. Often, the 
tow’s trajectory on the mandrel’s surface in each stroke is geodesic, which is the shortest distance 
between two points on a surface. However, the return procedure at the extremities of the mandrel, 
since the process is continuous, must follow a non-geodesic path. Differently from the geodesic, 
which follows the Clairaut relation, non-geodesic trajectories depend on the friction besides on 
mandrel radius and the defined winding angle. A correct evaluation of such trajectory prevents 
slippage of the tow or waste of material and time, if the return path is excessively short or long, 
respectively. Based on differential geometry, the non-geodesic path is herein analytically deduced 
for a cylindrical surface and numerically determined for revolution surfaces. Examples of 
application regarding the pattern generation are provided and discussed. 

1. INTRODUCTION 
Filament winding (FW) is a widespread manufacturing process for composite materials 

that is usually chosen for the fabrication of revolution parts such as tubes, shafts and pressure 
vessels. Although simple, the optimal properties are not always obtained due to lack of detailed 
knowledge of the process. In FW of thermoset composites, a tow of filaments, pre-impregnated 
(dry) or just impregnated (wet) with a thermoset resin before winding is wound over a rotating 
mandrel. The tow is led by a delivery eye moving parallel, or near parallel, to the direction of the 
rotation axis of the mandrel, from one end of the mandrel to the other end, and returning again.  

The FW process ends by curing the laminate, formed with the tows, in an autoclave or oven 
after which the mandrel is withdrawn from the wound part. This task is facilitated by the deposition 
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of a release agent on the mandrel prior to fiber deposition, and this agent may influence the slippage 
coefficient between tow and mandrel. 

The delivery eye positions the tow at a winding angle: angle between the tangent to the 
winding path and the rotational axis, determined through the ratio of the angular velocity of the 
mandrel and the longitudinal velocity of the delivery eye. Three winding modes are normally 
mentioned in the literature [1]: polar, hoop and helical winding. In polar winding, applied to 
manufacture vessels, the tow trajectory goes from one dome to the other, touching the polar 
opening at each side. In hoop winding, the tow is positioned side by side and the winding angle is 
near 90°, depending only on mandrel radius and tow width. Hoop winding may be done with a 
single stroke, which is the longitudinal movement of the delivery eye from one end to the other. 
The other winding modes must have at least two strokes – forward and backward. In case of helical 
winding, the tow is positioned at a defined winding angle forming a helix over the mandrel. The 
movements have to be repetitive in order to obtain uniform surface and thickness and, due to the 
continuity of the process (as the tow is continuous), a return procedure on the ends of the mandrel 
has to be adopted.  

Many layers may be wound as needed to achieve the desired part thickness, and each layer 
has a slightly different constitution since the radius increases each time. In helical winding, two 
entangled layers are simultaneously wound, one at the winding angle +𝛼𝛼 and the other at −𝛼𝛼, thus 
the laminate is antisymmetric.  

As aforementioned, the movements of the delivery eye in helical winding are defined by 
the forward and the backward strokes. Between them, a returning trajectory must be determined. 
Generally, the strokes follow a geodesic trajectory. i.e. the minimum distance between two points 
on a generic surface. Such paths are governed by Clairaut relation [3] and are independent of the 
mandrel-tow friction. In the return regions, however, the tow must follow a non-geodesic 
trajectory, which is governed by more complex equations that take friction into account.  

The returning trajectory impacts product quality, productivity and cost. A short trajectory 
may generate some slippage, changing the tow’s position close to the return region. Depending on 
the degree of slippage, the regular winding region may also be influenced, yielding a region where 
the layers are not with opposite winding angles and influencing the mechanical response of the 
component. On the contrary, a long trajectory reduces slippage but also the process’ efficiency 
regarding cost and time.  

Thus, this paper focuses on the analysis and understanding of the returning trajectory 
characteristics for a more adequate FW processing. The trajectory of tows on surfaces of revolution 
(both cylindrical and generic) using differential geometry concepts is presented. Analytical 
solutions are provided for a cylindrical surface and numerical procedures are described for generic 
surfaces of revolution. 

2. ANALYTICAL FORMULATION 

2.1 Non-geodesic trajectory for a returning tow on cylindrical surfaces  
 
A generic curve on a surface of revolution is presented and its infinitesimal contribution is 

shown in Figure 1. 𝐿𝐿𝑚𝑚 and 𝐿𝐿𝑝𝑝 refer to the meridional and the parallel lengths, respectively, while 
𝛼𝛼 and 𝜃𝜃 correspond to the winding angle and the mandrel rotation (both considering the FW 
process), respectively. 𝑧𝑧 is the direction of the axis of rotation. 

Through differential geometry [1], one may define 
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Figure 1- Infinitesimal rotational surface with tow path. 

d𝐿𝐿𝑚𝑚 = √𝐸𝐸d𝑧𝑧  d𝐿𝐿𝑝𝑝 = √𝐺𝐺d𝜃𝜃 (1) 

 
where 𝐸𝐸 and 𝐺𝐺 are the first fundamental forms of the surface. For revolution geometries 
 

𝐸𝐸 = �d𝑟𝑟
d𝑧𝑧
�
2

+ 1 𝐺𝐺 = 𝑟𝑟2 (2) 

 
where 𝑟𝑟 denotes the radius of the surface of revolution. For cylinders, r is constant and thus 
 
d𝐿𝐿𝑚𝑚 = d𝑧𝑧  d𝐿𝐿𝑝𝑝 = 𝑟𝑟d𝜃𝜃 (3) 

 
and, through trigonometric relations, one obtains 
 

d𝐿𝐿 =
d𝑧𝑧

cos(𝛼𝛼(𝑧𝑧)) =
𝑟𝑟d𝜃𝜃

sin(𝛼𝛼(𝑧𝑧))  ⇒  𝑟𝑟d𝜃𝜃 = tan(𝛼𝛼(𝑧𝑧)) d𝑧𝑧 
(4) 

 
which implies in a relationship between the variation of the winding angle and the mandrel’s 
rotation. From now on, the dependence of 𝛼𝛼 on 𝑧𝑧 is omitted. 

The differential equation of the winding angle variation along the 𝑧𝑧 axis which takes into 
account the slippage coefficient λ on a generic surface is written as [4,5] 

 
d𝛼𝛼
d𝑧𝑧

= 𝜆𝜆 �
sin(𝛼𝛼) tan(𝛼𝛼)

𝑟𝑟
−
𝑟𝑟′′ cos(𝛼𝛼)

1 + 𝑟𝑟′2
� −

𝑟𝑟′

𝑟𝑟
tan(𝛼𝛼) 

(5) 

 
where 𝑟𝑟′ and 𝑟𝑟′′ correspond to the first and second derivative of the radius in term of the axis of 
revolution 𝑧𝑧, respectively. The slippage coefficient in eq. (5) is determined by the equilibrium 
condition [5] as  
 

𝜆𝜆 =
𝐾𝐾𝑔𝑔
𝐾𝐾𝑁𝑁

 
(6) 

 
where 𝐾𝐾𝑔𝑔 and 𝐾𝐾𝑁𝑁 denote the geodesic and normal curvatures, respectively. For cylindrical surfaces, 
eq. (5) may be simplified as 
 
d𝛼𝛼
d𝑧𝑧

= 𝜆𝜆 �
sin(𝛼𝛼) tan(𝛼𝛼)

𝑟𝑟
�  ∴  

d𝛼𝛼
sin(𝛼𝛼) tan(𝛼𝛼) = 𝜆𝜆

d𝑧𝑧
𝑟𝑟

 
(7) 
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Equation (7) describes a non-geodesic path on a cylindrical surface. A geodesic trajectory is 
obtained considering the slippage coefficient null. In this case, the solution of eq. (5) is the Clairaut 
relation, defined by 

 
𝑟𝑟 sin(𝛼𝛼) = 𝑐𝑐 (8) 

 
where 𝑐𝑐 is a constant. The solution of eq. (7) is  
 
sin�𝛼𝛼𝑓𝑓� − sin(𝛼𝛼𝑖𝑖)

sin�𝛼𝛼𝑓𝑓� sin(𝛼𝛼𝑖𝑖)
=
𝜆𝜆
𝑟𝑟
�𝑧𝑧𝑓𝑓 − 𝑧𝑧𝑖𝑖� ⇒  sin�𝛼𝛼𝑓𝑓� =

sin(𝛼𝛼𝑖𝑖)

1 −
𝜆𝜆�𝑧𝑧𝑓𝑓 − 𝑧𝑧𝑖𝑖� sin(𝛼𝛼𝑖𝑖)

𝑟𝑟

 
(9) 

 
where 𝛼𝛼𝑖𝑖 and 𝛼𝛼𝑓𝑓 are the initial and final winding angles with their respective position, 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑓𝑓, 
respectively. By eq. (9), one can determine the position where the tow changes the stroke (forward 
to backward and vice-versa), 𝑧𝑧𝑓𝑓, considering 𝛼𝛼𝑓𝑓 = 90°. From a practical point of view, this 
information is important since it defines the required (minimum) mandrel length. 

Another important information that can be extracted from eq. (9) is the rotation angle 𝜃𝜃 required 
for the return procedure. By inserting eq. (9) into eq. (4), one obtains 

 

𝑟𝑟d𝜃𝜃 = tan�arcsin�
sin(𝛼𝛼𝑖𝑖)

1 −
𝜆𝜆�𝑧𝑧𝑓𝑓 − 𝑧𝑧𝑖𝑖� sin(𝛼𝛼𝑖𝑖)

𝑟𝑟

�� d𝑧𝑧 

(10) 

 
For integration purposes, let 

𝑎𝑎 = sin(𝛼𝛼𝑖𝑖)  𝑏𝑏 = 𝜆𝜆 𝑟𝑟�   𝜇𝜇 = 1 − 𝑎𝑎𝑏𝑏𝑧𝑧 (11) 

As aforementioned, eq. (9) can be used to define the position on the 𝑧𝑧-axis where the tow 
changes its stroke by setting 𝛼𝛼𝑓𝑓 = 90°. Considering 𝑧𝑧𝑖𝑖 = 0, this leads to 

 

𝑧𝑧𝑓𝑓 =
1 − 𝑎𝑎
𝑎𝑎𝑏𝑏

 ⇒  𝜇𝜇𝑓𝑓 = 𝑎𝑎 (12) 

 
Equation (12) measures the required length of the return path at the 𝑧𝑧-axis. The integrations are 

carried out by 𝜇𝜇, thus the Jacobian is 
 

d𝜇𝜇
d𝑧𝑧

 = −𝑎𝑎𝑏𝑏 
(13) 

 
By inserting eq. (9) into eq. (4) in terms of cosine, one obtains 
 

d𝐿𝐿 = −
1

𝑎𝑎𝑏𝑏 cos�arcsin�𝑎𝑎 𝜇𝜇� ��
d𝜇𝜇 = −

𝜇𝜇

𝑎𝑎𝑏𝑏�𝜇𝜇2 − 𝑎𝑎2
d𝜇𝜇 (14) 

Integration of eq. (14) yields 
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� d𝐿𝐿
𝐿𝐿(𝜇𝜇)

0
= −�

𝜇𝜇

𝑎𝑎𝑏𝑏�𝜇𝜇2 − 𝑎𝑎2
d𝜇𝜇

𝜇𝜇

𝜇𝜇𝑖𝑖
 ⇒ 𝐿𝐿(𝜇𝜇) =

1
𝑎𝑎𝑏𝑏

�
(𝑎𝑎2 − 𝜇𝜇2)

�𝜇𝜇2 − 𝑎𝑎2
−

(𝑎𝑎2 − 1)
√1 − 𝑎𝑎2

� 
(15) 

 
where 𝜇𝜇𝑖𝑖 = 1 (𝑧𝑧 = 0). By replacing 𝜇𝜇 = 𝑎𝑎 into eq. (15), one obtains an indeterminate, since close 
to the turning point, tan(𝛼𝛼) → ∞. 

Applying the L’Hopital rule, one determines the limit of the function with 𝜇𝜇 → 𝑎𝑎, obtaining 
 

𝐿𝐿(𝑎𝑎) =
(1 − 𝑎𝑎2)
𝑎𝑎𝑏𝑏√1 − 𝑎𝑎2

 
(16) 

 
Equation (16) defines the half-length of the returning path (until α=90°). Two limits may be 

defined: if the initial angle is close to 90°, as in hoop winding, the length is the smallest possible 
since a ≈ 1, and if α ≈ 0°, the half-length required to the return trajectory tends to infinity. 

Another important parameter is the required rotation angle 𝜃𝜃 for the half-length. It may be 
obtained analogously to 𝐿𝐿. Firstly, one considers eq. (4) along with eq. (9), thus 

 

𝑟𝑟� d𝜃𝜃 = −
1
𝑎𝑎𝑏𝑏

� tan �arcsin �
𝑎𝑎
𝜇𝜇
��d𝜇𝜇 (17) 

 
which results in 
 

𝜃𝜃(𝜇𝜇) =
1
𝜆𝜆

ln �
�𝜇𝜇2 − 𝑎𝑎2 − 𝜇𝜇 
√1 − 𝑎𝑎2 − 1

� 
(18) 

 
An interesting point of eq. (18) is that the half-dwell, which is independent on the mandrel 

radius, is defined as 
 

𝜃𝜃� 𝜇𝜇𝑓𝑓 = 𝑎𝑎� =
1
𝜆𝜆

ln �
𝑎𝑎 

1 − √1 − 𝑎𝑎2
� (19) 

 
and, it strongly depends on the winding angle (in a nonlinear fashion), being inversely proportional 
to the slippage coefficient. 

2.2 Non-geodesic trajectory for returning tow on generic surfaces  
 
In order to determine non-geodesic trajectories on generic surfaces, a position vector, 𝒅𝒅, is 

defined as 
 

𝒅𝒅(𝑧𝑧) = {𝑟𝑟 cos(𝜃𝜃) 𝑟𝑟 sin(𝜃𝜃) 𝑧𝑧}T (20) 
 
where both 𝑟𝑟 and 𝜃𝜃 depend on 𝑧𝑧. Differentiating 𝒓𝒓 with respect to 𝑧𝑧, one obtains 
d𝒅𝒅
d𝑧𝑧

= 𝒅𝒅′ = {𝑟𝑟′ cos(𝜃𝜃) − 𝑟𝑟 sin(𝜃𝜃)𝜃𝜃′ 𝑟𝑟′ sin(𝜃𝜃) − 𝑟𝑟 cos(𝜃𝜃)𝜃𝜃′ 1}T 
(21) 
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The angle between the vectors 𝒓𝒓′ and 𝜿𝜿 (unit vector in z direction) is the winding angle 𝛼𝛼.Thus 
 

𝒅𝒅′ ∙ 𝜿𝜿 = |𝒅𝒅′||𝜿𝜿| cos(𝛼𝛼)  ⇒  cos(𝛼𝛼) =
𝒅𝒅′ ∙ 𝜿𝜿

|𝒅𝒅′||𝜿𝜿| =
1

|𝒅𝒅′|
 

(22) 

 
Considering that the norm of 𝒅𝒅′ is determined as 
 

|𝒅𝒅′| = �𝑟𝑟′2 + 𝑟𝑟2𝜃𝜃′ + 1 (23) 

 
One defines the mandrel’s rotation by the following differential equation 
 

𝜃𝜃′ =
√tan2 𝛼𝛼 − 𝑟𝑟′2

𝑟𝑟
 

(24) 

 
which is obtained by algebraic manipulation of eqs. (22) and (23). Equation (24), along with eq. 
(5), defines the mandrel’s rotation and the winding angle through a generic revolution surface. One 
defines 
 

𝑯𝑯(𝑧𝑧) = �
𝜃𝜃(𝑧𝑧)
𝛼𝛼(𝑧𝑧)� ⇐ 𝑯𝑯′(𝑧𝑧) = �

𝜃𝜃′(𝑧𝑧)
𝛼𝛼′(𝑧𝑧)� 

(25) 

 
Due to the characteristics of 𝑯𝑯′(𝑧𝑧), 𝜃𝜃 and 𝛼𝛼 can be only obtained by a numerical procedure, noting 
that the last (𝛼𝛼) may be solved before the first (𝜃𝜃). Thus, the non-geodesic path over a generic 
surface of revolution may be determined. 

3. RESULTS AND DISCUSSION 
Trajectories, winding angle and mandrel’s rotation at the return region on cylindrical and 

surfaces of revolution are presented and discussed in this section. Firstly, concerning cylindrical 
surfaces, Equation (18) is plotted for four different slippage coefficients (𝜆𝜆 = 0.1, 𝜆𝜆 = 0.2, 𝜆𝜆 =
0.3 and 𝜆𝜆 = 0.4), considering a mandrel with 𝑟𝑟 = 25 mm and winding angle of 60° in Figure 2. 
The curves should be analyzed as at bound to the trajectories. For example, if the slippage 
coefficient of the mandrel is 0.1, in order to avoid any unwanted displacement of the tow in the 
return path, the shortest trajectory is presented by the curve with solid circles. Consequently, 
greater mandrel’s rotation and longer trajectories are needed, i.e. a longer mandrel is required. 

Figure 2 also implies that the greater the slippage coefficient, the lower the mandrel’s rotation 
and the required size of the return region. Moreover, eq. (18) estimates the minimum required size 
for the mandrel. For 𝜆𝜆 = 0.1, ca. 40-mm long return size is required, while for 𝜆𝜆 = 0.2, this length 
drops to ≈ 20 mm.  
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Figure 2 – Slippage coefficient at the returning path: mandrel’s rotation and max. z. 

  
(a) (b) 

Figure 3 – Bounds for the return region: (a) return angle × slippage coefficient for different 
winding angles and (b) length of return stroke × winding angle for different slippage coefficients. 

The two plots in Figure 2(a)-(b) show the correlation between mandrel’s rotation, slippage 
coefficient and stroke at the return region. Figure 2 also presents the bounds for these parameters 
and the mandrel’s rotation and the final stroke are inversely proportional to the slippage coefficient 
and the initial winding angle, respectively. As 𝜆𝜆 → 0, the required mandrel’s rotation tends to 
infinity (Figure 3(a)). A similar trend is noted as the winding angle tends to 0°, as mentioned before 
in the discussion of eq. (16). Also, the closer the winding angle is to 90°, the shorter is the return 
path. 

Figure 4 depicts the winding angle and the mandrel’s rotation in a non-cylindrical revolution 
surface governed by  

 
𝑟𝑟 = 5.5731.10−6𝑧𝑧3 − 0.00226208𝑧𝑧2 + 0.480329𝑧𝑧 + 17.9 [mm] (26) 

 
where 𝑧𝑧𝑖𝑖 = 0 [mm] and 𝑧𝑧𝑓𝑓 = 108 [mm]. Moreover, the winding angle at 𝑧𝑧𝑖𝑖 is 55°. Equation (25) 
is solved with a Runge-Kutta algorithm – RK4 – with 1500 points. Five slippage coefficients are 
evaluated. Interestingly, the winding angle for 𝜆𝜆 = 0.4 decreases until ≈ 40° and then increases 
to the initial winding angle. The same trend is found for 𝜆𝜆 = 0.5, but due to the high friction 
between the tow and the mandrel, the trajectory has a return (𝛼𝛼 = 90°) before the end of the 
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mandrel, at 𝑧𝑧 ≈ 72 mm. This behavior is similar to the non-geodesic trajectories in cylindrical 
surfaces previously shown in Figure 2.  
 

  
(a) (b) 

Figure 4 – Winding angle and mandrel’s angle × stroke at the return region for a non-cylindrical 
revolution surface. 

4. CONCLUSIONS 
The return region in helical FW is mostly disregarded in published literature work on FW. The 

return procedure influences process economics, processing time and waste generation, and the 
pattern formation during regular winding. Through equations α(z) and θ(z) presented in this work, 
the non-geodesic path for the return procedure is fully described on a cylindrical surface and also 
on a generic surface of rotation. The effect of mandrel radius, slippage coefficient and initial 
winding angle on maximum z and total rotation angle θ was presented, being useful for parameters 
selection in the FW process. 
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