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Abstract 

Due to the complex geometry of helical cables and wire ropes, the available analytical models 
have a series of simplifications, assumptions and a limited capacity in reproducing their 
mechanical behavior, and 3D numerical models are often costly and time-consuming due to 
interwire contact. Both methods are not viable when dealing with long cables, as in cable-stayed 
bridges and offshore platforms applications, where they can reach more than 1500 m (ultra-deep 
waters). The purpose of this work is to incorporate a new 1D beam element in a commercial finite 
element (FE) software. A 3D FE model, previously verified by experiments, was used to calibrate 
the 1D element, which carries the information provided by the 3D model in its stiffness matrix. 
The result is a 2-node beam element with six degrees of freedom per node which is able to simulate 
long cables, combining both the practical implementation of an analytical model with the accuracy 
of a 3D FE model. The adjusted beam model fitted the 3D model with a coefficient of 
determination (R²) above 0.90. 
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1. INTRODUCTION 
A cable or a wire rope is a structural element made of a layup of strands and wires or fibers 

helically wrapped around a central straight core [1]. Their applications include prestressing of 
concrete, stays for guyed masts [1], deployable structures for satellite transportations [2] bridging 
applications [3] and mooring of offshore platforms [4]. In all these applications, carbon-fiber 
reinforced polymer (CFRP) cables are replacing traditional materials due to their high specific 
strength and stiffness compared to metallic and synthetic fiber cables [5], outstanding fatigue 
behavior [3], no-magnetism, corrosion resistance [2] and low thermal expansion, being also 
superior to steel in critical mechanical aspects as creep and relaxation [6]. Their disadvantages, 
however, include lack of ductility, high cost, and difficulties related to connections [6]. 



4th Brazilian Conference on Composite Materials. Rio de Janeiro, July 22nd-25th, 2018 

2 
 

The first mathematical models created to predict its mechanical behavior considered the cable 
as a set of bars, neglecting torsion and bending stiffness, such as the model proposed by Hruska 
[7]. In the 70’s and 80’s different authors applied Love’s rod theory [8] to model cables, as in 
Costello’s model for the tensile and bending behavior of single and multi-layered cables [9]. These 
models, however, made many assumptions, including linear elastic infinitesimal elasticity, 
isotropic material, neglection of contact forces, and limited applicability to a few boundary 
conditions [10]. Ghoereishi [1] compared classical analytical models and a finite element (FE) 
model and showed that for low helix angles (low pitch cables), analytical and numerical models 
diverge substantially.  

More recently, different models were reported to tackle some of these assumptions. Elata [11] 
proposed a model to accurately capture stress distribution along the wires of multi-layered cables, 
which has been reported to be poorly predicted by most analytical models like Costello’s [12], 
while Argatov [13] attempted to model interwire friction and Crossley [14] created a model for a 
transversally isotropic material. Nevertheless, none of them could overcome all hypotheses, which 
is desirable for a trustworthy model for structural cables. 

Regarding numerical solutions, a good correlation can be achieved between FE models and 
experimental tests (tensile or bending), even for helical composite cables [15]. However, it has 
been shown that the required computational time to simulate helical cables with 3D hexahedral 
elements greatly increases as a function of the cable length. For dynamic simulations of an in-
service cable in offshore platforms, for instance, it is recommended to simulate its full length, 
whose value for ultra-deep water is greater than 1500 m. 

This work proposes a methodology to model a helical cable using Euler-Bernoulli beam 
elements in order to combine the accuracy of 3D FE models with the quickness of analytical 
models. The process consists in numerically evaluating the stiffness matrix of a transversally 
isotropic cable and then apply the least square method to compute coefficients that could adjust an 
Euler-Bernoulli stiffness matrix to the stiffness of the 3D model. 

2. METHODOLOGY 

2.1 Beam element 
Beams are the most common type of structural components, widely used in civil and mechanical 
engineering. Since a 3D body is modeled as a 1D body, several assumptions and approximations 
to the underlying physics are made [16]. Classical beam theory of Euler-Bernoulli, which is 
eligible for slender beams [17], involves the following assumptions [18]: (i) one dimension is 
considerably larger than the other two; (ii) plane cross-sections perpendicular to the axis of the 
beam remain plane and perpendicular to the axis after deformation; (iii) shear deformation is 
neglected; (iv) deformations are infinitesimal; (v) the Poisson effect is neglected; (vi) symmetric 
cross-sectional area, with the neutral axis coincident with the centroid; (vii) linear-elastic material. 
Since the focus here is on long composite cables, usually CFRP (with ultimate strain ca. 2%), 
hypotheses (i-vi) are valid, whereas hypothesis (vii) must be further investigated. 

In order to evaluate the beam element stiffness matrix, a two-node element is considered, with 
six degrees of freedom (DOF) per node (namely, axial displacement, transverse displacement in 
y-direction, transverse displacement in z-direction, and rotation about x, y and z-axis) depicted in 
Figure 1, where u are displacements and θ rotations, with subscripts indicating node number and 
direction, respectively. 

For DOF 1 (axial displacement), considering a beam with length L, constant cross-section area 
A and Young’s modulus E, the stiffness is as follows: 
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where i and j are stiffness coefficients (for indices 1 and 7), and ψ represents the interpolation 
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Figure 1 – Illustration of the beam element and coordinate system. 

Regarding DOFs 2 and 5 (deflection in y and rotation around the z-axis, respectively), Hermite 
interpolation functions were applied, and the stiffness is given by: 
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where i and j are indices 2, 6, 8 and 12 and Iz is the moment of inertia about z-axis. Analogously, 
DOFs 3 and 6 (deflection in z and rotation around the y-axis, respectively) are obtained with the 
same interpolation functions of Equation (4), but changing Iz for Iy in Equation (3). DOF 4 (torsion 
around the x-axis) is achieved by substituting E for G (shear modulus) and A for J (polar moment 
of inertia) in Equation (1), through the interpolation functions of Equation (2). The complete 
stiffness matrix is obtained as: 
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2.2 3D FE Model 
The cable was modelled in the FE commercial platform Abaqus using the C3D8R element 

(hexahedral linear eight-node with reduced integration) [19]. The geometry adopted, 1×7, is shown 
in Figure 2 (a). Hard and tangential contacts (penalty method) were inserted between external wires 
and between wires and core (Figure 2 (b)). Since the material is considered transversally isotropic, 
a local coordinate system was used to keep the wires’ properties aligned in the correct orientation. 
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Figure 2 – (a) 1×7 cable meshed with the C3D8R elements and (b) one of the 12 contact pairs 

inserted in the model. 

The procedure to obtain the stiffness components is illustrated in Figure 3 and consists in 
clamping the cable in the left end and allowing 1 DOF free in the right end. The stiffness is obtained 
by measuring the reaction forces or moments after applying the prescribed displacements or 
rotations. Since the Iy and Iz values are equal, DOFs 2 and 6 are equal to 3 and 5, respectively. For 
the DOF 4, rotation was applied clockwise and anti-clockwise since for a helical cable torsion 
stiffness is expected to be higher when twisting it in a direction opposite to the wires initial 
orientation. The other terms of the beam stiffness matrix were omitted due to matrix symmetry 
and assumption of Iy = Iz. 

 

 
Figure 3 – Procedure adopted to obtain six terms of the beam stiffness matrix. 
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2.3 Regression procedure 
The factorial design allows the simultaneous consideration of many variables at different levels, 

as well as the interaction between them [20]. In order to define the required level for each variable, 
a sensitive analysis was performed involving all parameters that significantly impact the cable 
behavior. Considering the material as transversally isotropic, engineering constants ν12=ν13, ν23, 
G23, E2=E3 and the friction coefficient μ play a small role in the cable behavior [15], therefore, 
the sensitivity analysis focused on wire diameter D, longitudinal Young’s modulus E1, in-plane 
shear modulus G12=G13, helix angle α and length L. The variables were individually studied. 

After defining the factorial design, coefficients to adjust the cable stiffness to the beam stiffness 
matrix of Equation (5) were numerically evaluated through finite-differences method [21]. 
Different function families were tried to maximize the coefficient of determination (R²). 

3. RESULTS AND DISCUSSION 
The values used as input in the 3D model to evaluate cable stiffness are reported in Table 1, 

while the ranges of the sensitivity analysis are reported in Table 2. Relative to shear modulus, its 
influence was only significant in DOF 4, and for a long cable, the difference in stiffness 
considering rotation applied clockwise and anti-clockwise was negligible. Its influence in DOF 4 
(torsion term) was approximately linear (R²>0.999).  

Regarding the Young’s modulus, its influence in the torsion stiffness was negligible and 
approximately linear for all the other stiffness matrix terms (average value of R² above 0.98). 
Relative to length and diameter, linear behavior was observed in all DOFs. However, while the 
linearity in L increases with cable length, the opposite occurred for the diameter. For the analysis 
of α, a review in scientific and technical literature was carried out to identify the angle range for 
real cables, which was found to be within 62°-82°. As the helix angle increases, all stiffness terms 
increase, but at distinct and non-linear rates. 

 
Table 1 – Values adopted for the numerical model. 

Property Value 
Geometry 1×7 (6 wires+core) 

E2=E3 (MPa) 180000 
G23 (MPa) 69231 
ν12=ν13=ν23 0.30 

μ 0.65 
 

Table 2 – Ranges of the analyzed variables. 

Parameter Minimum Maximum 
E1 (MPa) 90000 270000 
G12 (MPa) 34615 103846 

D (mm)  2.12 3.67 
L (mm) 50 150 

α (°) 62 82 
 
Based on the aforementioned results, two levels were adopted for E, G, and L, three for D and 

five for α. Considering the four cases (a-d) mentioned in Figure 3, the total number of simulations 
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was (2×2×3×5)×4=240. These simulations were performed considering the ranges exposed in 
Table 2, except for the length, whose value was the largest possible within the convergence range, 
aiming to achieve a better fitting for the proposed application. The applied lengths and updated 
stiffness coefficients are reported in Table 3, along with the R² values, which were greater than 0.9 
in all cases. 

Considering that all terms in the stiffness matrix of the beam element were adjusted with relative 
good accuracy, this beam model is expected to satisfactory reproduce a 1×7 cable behavior under 
different load conditions, with an extremely low computational time in comparison to 3 D models 
with contact between wires, since this feature is incorporated in the updated beam model. 

 
Table 3 – Updated values of stiffness after the adjustment process, along with the respective 

coefficients of determination. 

Length Range Adjusted Stiffness R² 
100 - 150 mm ( )11 2.641 3.598 sinEA EAK

L L
α= − +    0.9994 

100 - 200 mm ( ) ( )22 3 3 3

12 12 123.041 2.756 sin 1.184 cosEI EI EIK
L L L

α α= − −    0.9547 

100 - 200 mm ( ) ( )26 2 2 2

6 6 62.756 2.492 sin 1.077 cosEI EI EIK
L L L

α α= − −    0.9423 

100 - 150 mm ( )66
4 40.012 0.015 tanEI EIK

L L
α= −    0.9117 

100 - 150 mm ( )6,12
2 20.002 0.020 tanEI EIK

L L
α= − +   0.9006 

100 - 200 mm  44 0.035 0.060GJ GJK
L L

= − +   0.9180 
 

4. CONCLUSIONS 
A methodology for the simulation of cables using 3D beam elements was presented. Higher 

coefficients of determination were obtained when comparing the beam stiffness with the stiffness 
of a 3D cable, indicating that the beam mechanical behavior will accurately simulate the behavior 
of the 3D cable. This model is able to simulate long cables much faster than 3D models. The use 
of trigonometric functions in the stiffness terms that account for the helix angle is justifiable since 
the cable is composed of one straight (core) and six helical wires. 

The influence of the ratio between core and external wires diameter on the updated stiffness must 
be further investigated, as well as the application of this methodology for multi-layered cables. 
And the proposed methodology still needs to be validated to verify the implications of neglecting 
non-linearities and the coupling between tension and torsion. 
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