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Abstract 

This work presents an isogeometric formulation for the geometrically nonlinear analysis of 
functionally graded material (FGM) plates. FGM plates are made of a mixture of two components 
(ceramic and metal) whose volume fractions vary smoothly along the thickness. The kinematic 
model is based on the Reissner-Mindlin theory for bending and shear strains and the von Kármán 
theory for nonlinear membrane strains. Non-Uniform Rational B-splines (NURBS) are used as 
basis functions for the isogeometric formulation. The formulation is applied to study the buckling 
and post-buckling of FGM plates.  

1. INTRODUCTION 
In light of technological development, especially within the spectrum of engineering 

applications, the search for new materials, which can perform well under the most diverse and 
rigorous conditions, plays an important role. 

Functionally Graded Materials (FGM) are advanced materials of the composite family. These 
materials consist of two or more different components, forming a continuous and smooth varying 
spatial profile. In the preferred orientation, FGM properties (such as Young's modulus and 
Poisson's ratio) have superior performance in comparison with the isolated constituents and 
possess mechanical and thermal advantages, such as toughness and a high degree of temperature 
resistance [1,2]. 

Due to its thermo-mechanical properties, FGM have a vast application in the manufacture of 
structural components, in particular, plate elements. Thus, the mechanical behavior of FGM plates 
has received considerable attention [3-12]. In these studies, nonlinearity and shear effects are some 
important factors and need to be taken into account.  

The Isogeometric Analysis (IGA) is a numerical method proposed by Hughes et al. [13] in order 
to integrate the numerical analysis and Computer Aided Design (CAD). In IGA, the same basis 
functions (e.g. NURBS) functions are used for geometric modeling and approximation of the 
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displacement field. Therefore, the geometry is exactly represented in the structural analysis, 
independent of the discretization level. In addition, the analysis model can be easily refined using 
standard geometric modeling algorithms, as knot-insertion and degree-elevation [14]. 

This work presents an accurate and efficient isogeometric formulation for geometrically 
nonlinear analysis of FGM plates and shallow shells based on the Reissner-Mindlin plate theory 
and von Kármán strains. This formulation will be applied in the stability analysis of perfect FGM 
plates, including the evaluation of the buckling load and post-buckling paths.  

2. FUNCTIONALLY GRADED MATERIALS 
FGM are obtained by mixing two distinct material phases, as a ceramic and a metal. The 

manufacture techniques allow a smooth variation of the volume fraction along the thickness 
direction. Thus, FGM do not present the high stress discontinuities present in conventional 
laminates. 

The ceramic volume fraction (𝑉𝑉𝑐𝑐) is assumed to vary in the thickness direction (𝑧𝑧) according to 
a simple power law: 

 𝑉𝑉𝑐𝑐(𝑧𝑧) = �
1
2

+
𝑧𝑧
ℎ
�
𝑛𝑛

 
(1) 

where n is the volume fraction index and h is the plate thickness. The effective material properties 
can be evaluated by the rule of mixtures [15]: 
𝐸𝐸(𝑧𝑧) = 𝐸𝐸𝑚𝑚 + (𝐸𝐸𝑐𝑐 + 𝐸𝐸𝑚𝑚)𝑉𝑉𝑐𝑐(𝑧𝑧) 

(2) 
ν(𝑧𝑧) = ν𝑚𝑚 + (ν𝑐𝑐 + ν𝑚𝑚)𝑉𝑉𝑐𝑐(𝑧𝑧) 

where 𝐸𝐸 represent Young’s modulus, ν represents the Poisson’s ratio, and the subscripts m and c 
represent metal and ceramic, respectively.  

3. ISOGEOMETRIC ANALYSIS 
The model adopted in this work is based on the Reissner-Mindlin theory for bending and 

transverse shear strains and the von Kármán theory for nonlinear membrane strains. Thus, the 
displacement field at any point of the shell is given by: 
𝑢𝑢𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑢𝑢(𝑥𝑥,𝑦𝑦) + 𝑧𝑧𝜃𝜃𝑦𝑦; 𝑢𝑢𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑣𝑣(𝑥𝑥,𝑦𝑦) − 𝑧𝑧𝜃𝜃𝑥𝑥; 𝑢𝑢𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑤𝑤(𝑥𝑥,𝑦𝑦) (3) 

where u, v and w are the midsurface displacements in the x, y, and z directions, respectively. 
Using the von Kármán theory, the in-plane strains are given by: 

𝛆𝛆 =

⎩
⎪
⎨

⎪
⎧
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⎨
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⎧
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= 𝛆𝛆𝑚𝑚 + 𝑧𝑧𝛋𝛋  (4) 

where 𝛆𝛆𝑚𝑚 are the membrane strains and 𝛋𝛋 are the curvatures. According to the Reissner-Mindlin 
theory, the transverse shear strains are given by: 

𝛄𝛄 = �
𝛾𝛾𝑥𝑥𝑥𝑥
𝛾𝛾𝑦𝑦𝑦𝑦� =

⎩
⎨

⎧
𝜕𝜕𝜕𝜕
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⎬

⎫
 (5) 
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where θx and θy represents the rotations about the y and x axes, respectively. 
Considering a linear elastic behavior: 

⎩
⎪
⎨

⎪
⎧
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
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⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡
𝑄𝑄11 𝑄𝑄12 0 0 0
𝑄𝑄12 𝑄𝑄22 0 0 0

0 0 𝑄𝑄66 0 0
0 0 0 𝑄𝑄44 0
0 0 0 0 𝑄𝑄55⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
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𝛾𝛾𝑦𝑦𝑦𝑦⎭

⎪
⎬

⎪
⎫

 (6) 

where: 

𝑄𝑄11 =
𝐸𝐸

1 − 𝑣𝑣²
 𝑄𝑄12 = 𝑣𝑣𝑄𝑄11 𝑄𝑄22 = 𝑄𝑄11 𝑄𝑄44 = 𝑄𝑄55 = 𝑄𝑄66 =

𝐸𝐸
2(1 − 𝑣𝑣)

 (7) 

The membrane (N), bending (M) and shear (Qs) stress resultants are given by: 

𝐍𝐍 = �
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦
𝑁𝑁𝑥𝑥
� = � �

𝜎𝜎𝑥𝑥𝑥𝑥
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�
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−ℎ/2
𝑑𝑑𝑑𝑑 𝐌𝐌 = �
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𝑀𝑀𝑦𝑦
𝑀𝑀𝑥𝑥𝑥𝑥

� = � �
𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑥𝑥𝑥𝑥

�
ℎ/2

−ℎ/2
𝑧𝑧 𝑑𝑑𝑑𝑑 

(8) 

𝐐𝐐𝑠𝑠 = �
𝑄𝑄𝑥𝑥𝑥𝑥
𝑄𝑄𝑦𝑦𝑦𝑦

� = � �
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑦𝑦𝑦𝑦�

ℎ/2

−ℎ/2
𝑑𝑑𝑑𝑑 

 

The stress resultants can be written in terms of the generalized strains as: 

�
𝐍𝐍
𝐌𝐌
𝐐𝐐
� = �

𝐀𝐀 𝐁𝐁 𝟎𝟎
𝐁𝐁 𝐃𝐃 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐆𝐆

� �
𝛆𝛆𝑚𝑚
𝛋𝛋
𝛄𝛄
� (9) 

where A, B, D and G are the extensional, membrane-bending coupling, bending and shear stiffness 
matrices, respectively, given by: 

�𝐴𝐴𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑖𝑖𝑖𝑖,𝐷𝐷𝑖𝑖𝑖𝑖� = � 𝑄𝑄𝑖𝑖𝑖𝑖(1, 𝑧𝑧, 𝑧𝑧2)𝑑𝑑𝑑𝑑
ℎ/2

−ℎ/2
 𝐺𝐺𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑠𝑠 � 𝑄𝑄𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

ℎ/2

−ℎ/2
 (10) 

where 𝑘𝑘𝑠𝑠 denotes the transverse shear correction coefficient and the value 5/6 is adopted. It is 
important to note that A, B and D are defined for i,j = 1,2,6 and G is defined for i,j = 4,5. 

3.2 NURBS 
Non-Uniform Rational B-splines (NURBS) are widely used by CAD systems to model complex 

geometries. This item provides only the basics required for the present paper and the interest in 
the reader is referred to [14]. 

The B-spline basis functions are defined by the recursive Cox-de Boor formula: 

𝑁𝑁𝑖𝑖,0(ξ) = �
  1, ξ𝑖𝑖 ≤ ξ ≥ ξ𝑖𝑖+1

0,           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

(11) 
𝑁𝑁𝑖𝑖,0(ξ) =  

ξ − ξ𝑖𝑖
ξ𝑖𝑖+𝑝𝑝 − ξ𝑖𝑖

𝑁𝑁𝑖𝑖,𝑝𝑝−1(ξ) +
ξ𝑖𝑖+𝑝𝑝+1 − ξ

ξ𝑖𝑖+𝑝𝑝+1 − ξ𝑖𝑖+1
𝑁𝑁𝑖𝑖+1,𝑝𝑝−1(ξ) 

However, B-Splines may be insufficient to exactly model curved geometries, as circles and 
cylinders. In this case, they can be exactly represented by non-uniform rational B-splines 
(NURBS) functions. The NURBS functions can be defined as: 
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𝑅𝑅 =
𝑤𝑤𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖,𝑝𝑝(ξ)𝑁𝑁𝑗𝑗,𝑞𝑞(η)

𝑊𝑊
 𝑊𝑊 = ��𝑤𝑤𝚤̂𝚤𝚥̂𝚥𝑁𝑁𝚤̂𝚤,𝑝𝑝(

𝑛𝑛

𝚤̂𝚤=1

𝑚𝑚

𝚥̂𝚥=1

ξ)𝑁𝑁𝚥̂𝚥,𝑞𝑞(η) (12) 

where ξ and h are two parametric dimensions and p and q are the B-splines basis of degrees in 
these dimensions, respectively. 

A tensor product NURBS surface of degree (p x q) is defined by a linear combination of 
bivariate rational blending functions (R) and a matrix of control points p: 

𝐒𝐒(ξ,η) = ��𝑅𝑅𝑖𝑖𝑖𝑖𝐩𝐩𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 (13) 

In this work, the plate geometry described by a bivariate NURBS surface given by: 

𝑥𝑥 =  �𝑅𝑅𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛𝑛𝑛

𝑘𝑘=1

 𝑦𝑦 =  �𝑅𝑅𝑘𝑘𝑦𝑦𝑘𝑘

𝑛𝑛𝑛𝑛

𝑘𝑘=1

 
 

(14) 

In the isogeometric formulation presented here, the same NURBS basis are also employed to 
approximate the membrane and transverse displacements and rotations of the shell: 
𝐮𝐮 = 𝐑𝐑𝐮𝐮𝑒𝑒 𝐑𝐑 = [𝐑𝐑1  𝐑𝐑2   ⋯   𝐑𝐑nn] 𝐑𝐑𝑘𝑘 = R𝑘𝑘𝐈𝐈5x5 (15) 

where u = [u v w θx θy] is the displacement vector of the midsurface, ue is the control points 
displacements, R is the matrix of shape functions and nn is the number of control points. Using 
Equations (4) and (15), the strains can be written as: 

𝛆𝛆 = �
𝛆𝛆𝑚𝑚
𝛋𝛋
𝛄𝛄
� = �

𝛆𝛆0𝑚𝑚
𝛋𝛋
𝛄𝛄
� +

1
2
�
𝛆𝛆𝐿𝐿𝑚𝑚
𝟎𝟎
𝟎𝟎
� = �𝐁𝐁0 +

1
2
𝐁𝐁𝐿𝐿�𝐮𝐮𝑒𝑒 = 𝐁𝐁𝐮𝐮𝑒𝑒 (16) 

where the sub-matrices of B for each control point are given by: 
 

𝐁𝐁0𝑚𝑚 = �
𝑅𝑅𝑘𝑘,𝑥𝑥 0 0 0 0

0 𝑅𝑅𝑘𝑘,𝑥𝑥 0 0 0
𝑅𝑅𝑘𝑘,𝑥𝑥 𝑅𝑅𝑘𝑘,𝑥𝑥 0 0 0

�  𝐁𝐁0𝑏𝑏 = �
0 0 0 0 𝑅𝑅𝑘𝑘,𝑥𝑥
0 0 0 −𝑅𝑅𝑘𝑘,𝑦𝑦 0
0 0 0 −𝑅𝑅𝑘𝑘,𝑥𝑥 𝑅𝑅𝑘𝑘,𝑦𝑦

� 

(17) 

𝐁𝐁𝐿𝐿𝑚𝑚 = �
0 0 𝑊𝑊𝑥𝑥𝑅𝑅𝑘𝑘,𝑥𝑥 0 0
0 0 𝑊𝑊𝑦𝑦𝑅𝑅𝑘𝑘,𝑥𝑥 0 0
0 0 𝑊𝑊𝑦𝑦𝑅𝑅𝑘𝑘,𝑥𝑥 + 𝑊𝑊𝑥𝑥𝑅𝑅𝑘𝑘,𝑥𝑥 0 0

� 𝐁𝐁0𝑠𝑠 = �
0 0 𝑅𝑅𝑘𝑘,𝑥𝑥 0 𝑅𝑅𝑘𝑘
0 0 𝑅𝑅𝑘𝑘,𝑦𝑦 𝑅𝑅𝑘𝑘 0 � 

with 

𝑊𝑊𝑥𝑥 = �𝑅𝑅𝑘𝑘,𝑥𝑥𝑤𝑤𝑘𝑘

𝑛𝑛𝑛𝑛

𝑘𝑘=1

 𝑊𝑊𝑦𝑦 = �𝑅𝑅𝑘𝑘,𝑦𝑦𝑤𝑤𝑘𝑘

𝑛𝑛𝑛𝑛

𝑘𝑘=1

   (18) 

The internal forces vector g is derived from the Principle of Virtual Work using the Total 
Lagragian approach: 

𝐠𝐠(𝐮𝐮) = � 𝐁𝐁�𝑇𝑇𝛔𝛔�𝑑𝑑𝐴𝐴0
𝐴𝐴0

,𝐁𝐁� = (𝐁𝐁0 + 𝐁𝐁𝐿𝐿) (19) 

The tangent stiffness matrix (KT) is given by: 
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𝐊𝐊𝑇𝑇 =
𝜕𝜕𝐠𝐠(𝐮𝐮)
𝜕𝜕𝐮𝐮

= � 𝐁𝐁�𝑇𝑇
𝜕𝜕𝛔𝛔�
∂𝐮𝐮

𝑑𝑑𝐴𝐴0
𝐴𝐴𝟎𝟎

+ �
∂𝐁𝐁�𝑇𝑇

∂𝐮𝐮
𝛔𝛔�𝑑𝑑𝐴𝐴0

𝐴𝐴0
 (20) 

where the first term is the material stiffness matrix KL and the second term corresponds to the 
geometric stiffness matrix Kσ, given by: 

𝐊𝐊𝐿𝐿 = � 𝐁𝐁�𝑇𝑇
∂𝛔𝛔�
∂𝐱𝐱

𝑑𝑑𝐴𝐴0
𝐴𝐴0

= � 𝐁𝐁�𝑇𝑇
𝜕𝜕𝛔𝛔�
𝜕𝜕𝛆𝛆

𝜕𝜕𝛆𝛆
𝜕𝜕𝐮𝐮

𝑑𝑑𝐴𝐴0
𝐴𝐴0

= � 𝐁𝐁�𝑇𝑇𝐂𝐂𝑇𝑇𝐁𝐁�𝑑𝑑𝐴𝐴0
𝐴𝐴0

 
(21) 

𝐊𝐊𝜎𝜎 = �
𝜕𝜕𝐁𝐁�𝑇𝑇

𝜕𝜕𝐮𝐮
𝛔𝛔�𝑑𝑑𝐴𝐴0

𝐴𝐴0
= �

𝜕𝜕𝐁𝐁�𝑇𝑇

𝜕𝜕𝐮𝐮
𝐍𝐍𝑑𝑑𝐴𝐴0

𝑨𝑨𝟎𝟎
= � 𝐆𝐆𝑇𝑇𝐒𝐒𝐒𝐒𝑑𝑑𝐴𝐴0

𝑨𝑨𝟎𝟎
 

where: 

𝐆𝐆 = �
0 0 𝑅𝑅𝑘𝑘,𝑥𝑥 0 0
0 0 𝑅𝑅𝑘𝑘,𝑦𝑦 0 0� 𝐒𝐒 = �

𝑁𝑁𝑥𝑥 𝑁𝑁𝑥𝑥𝑥𝑥
𝑁𝑁𝑥𝑥𝑥𝑥 𝑁𝑁𝑦𝑦

� (22) 

The equilibrium equations for displacement independent loads can be written as: 
𝐫𝐫(𝐮𝐮,λ) = 𝐠𝐠(𝐮𝐮) − λ𝐟𝐟 = 𝟎𝟎 (23) 

where f is the reference vector for external loads, λ is load factor, and r is the residual vector. The 
nonlinear equilibrium paths (i.e. load-displacement curves) can be traced using appropriate path-
following methods, as the Displacement Control or Arc-Length Method [15]. 

For stability analysis, critical points (limit or bifurcation) along the equilibrium path can be 
determined solving the nonlinear system: 

�
𝐫𝐫(𝐮𝐮, λ)
𝐊𝐊(𝐮𝐮,λ)𝛗𝛗
‖𝛗𝛗‖ − 𝟏𝟏

� = 𝟎𝟎 (24) 

The numerical algorithms presented in [16] can be used to the stability analysis of perfect and 
imperfect structures, including the branch-switching to secondary paths at bifurcation points. 

4. NUMERICAL RESULTS  
Simply supported (SS) and a clamped (C) FGM plates under uniaxial compressive loading were 

analyzed using the proposed IGA formulation. The plates are square with length a = 2m and 
thickness h = 0.02m (h/a = 1/100). The materials properties are: Em = 70 GPa (metal) and 𝐸𝐸𝑐𝑐 =
380 GPa (ceramic). Poisson’s ratio is considered constant and chosen as 𝑣𝑣 = 0.3. The volume 
fraction variation along the thickness is illustrated in Figure 1a.  

The load is applied at x-direction (Figure 1a). In the simply supported (SS) case are all edges 
fixed in z-direction. The nodes at the middle point of loaded and transverse edges are fixed in y 
and x directions, respectively. In addition, when all edges are clamped, the rotations about y and x 
axes are fixed along the loaded and transverse edges, respectively. These boundary conditions are 
illustrated in Figure 1a. The IGA model used in the analysis of the FGM plates has 8x8 elements 
with cubic basis functions (p = 3).  

The results are compared with Finite Elements Method (FEM) solution obtained using Abaqus 
software [17]. Since Abaqus does not have FGM in the materials options, the stiffness matrices A, 
B, D, and G were evaluated in an external routine and given as input data. The analysis was carried 
out using a 16x16 mesh of quadratic S8R elements.  

Several studies about the influence of boundary conditions in FGM plates have been presented 
in the literature. These works showed the inexistence of bifurcation buckling in simply supported 
(SS) plates subjected to in-plane compressive edge loads [18], as also occurs for non-symmetric 



4th Brazilian Conference on Composite Materials. Rio de Janeiro, July 22nd-25th, 2018 

6 
 

laminated plates. Therefore, only the clamped (C) case was considered in the bifurcation analysis 
(linearized buckling), since plates with all edges clamped exhibit bifurcation buckling [19].  
 

 
 

(a) 
 

(b) 

Figure 1: Boundary conditions and volume fraction along the thickness. 
 

 
Figure 2: Buckling loads for different exponents. 

 
The obtained results are given in Figure 2, where the normalized buckling coefficient is defined 

as λ = 𝑁𝑁𝑐𝑐𝑐𝑐𝑎𝑎² 𝜋𝜋²𝐷𝐷0⁄ , where 𝐷𝐷0 = 𝐸𝐸ℎ3/12(1 − 𝑣𝑣2). Good agreement is obtained between the IGA 
and FEM results. The results clearly show that the buckling load decreases with the volume 
fraction exponent (n). 

4.2 Nonlinear analysis 
The proposed IGA formulation is used for geometrically nonlinear analysis of FGM plates. The 

obtained results for simply supported plates are presented in Figure 3a. The load factor is 
normalized as λ = 𝑁𝑁𝑐𝑐𝑐𝑐 𝑁𝑁𝑐𝑐⁄ , where 𝑁𝑁𝑐𝑐 is the buckling load of the plate with homogeneous ceramic 
section (n = 0). 
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The results show that bifurcation buckling occurs only for n = 0 (isotropic plate), since n > 0 
results in a non-symmetric stiffness distribution leading to stable equilibrium paths, similar to the 
behavior of imperfect plates. In addition, the results show that increasing the volume fraction 
exponent (n) decreases the plate strength. 

 
(a) Simply Supported. 

 
(b) Clamped. 

Figure 3: Nonlinear paths. 
 

The results obtained for clamped plates are presented in Figure 3b. The results show that 
clamped FGM plates present bifurcation buckling, unlike simple supported ones. In addition, 
increasing the volume fraction exponent (n) not only decreases the buckling load, but also 
decreases the post-critical strength reserve of FGM plates, leading to post-buckling behavior 
characterized by small imperfection sensitivity. This imperfection sensitivity increases with the 
volume fraction exponent (n). 

5. CONCLUSIONS 
In this paper, the buckling and post-buckling behavior of FGM plates under uniaxial loading 

were studied using a NURBS-based isogeometric formulation. Plate kinematics is based on 
Reissner-Middlin plate theory with the geometrically nonlinear effects considered using the von 
Kármán theory.  

FGM plates with simply supported and clamped boundary conditions were analyzed. The 
linearized buckling loads for clamped FGM plates computed by the IGA formulation are in good 
agreement with FEM results. The buckling loads decrease with the volume fraction exponent. 

The nonlinear equilibrium paths confirmed that FGM plates with simply supported boundary 
conditions do not present bifurcation buckling and display a stable nonlinear behavior similar to 
imperfect homogeneous and laminated plates. On the other hand, clamped FGM plates present 
bifurcation buckling, but display a slight imperfection sensitivity, which increases with the volume 
fraction exponent.  
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