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Abstract 

The use of optimization techniques is necessary in order to explore the full potential of 
laminated composite structures. Unfortunately, the computational cost of the optimization process 
can be very high when numerical methods are used to carry out the structural analysis. This work 
addresses the use of surrogate models to reduce the computational cost to optimize composite 
structures. The PSO algorithm is used for optimization and a sequence of surrogate models, based 
on the use of Radial Basis Functions, is used to approximate the structural responses. The accuracy 
of the proposed approach is assessed using a set of laminate optimization problems and very good 
results were obtained.  

1. INTRODUCTION 
Fiber reinforced composite (FRC) materials present high resistance/weight and stiffness/weight 

ratios, corrosion and fatigue resistance, and other interesting properties for high performance 
structural applications. These composites are formed from high strength fibers embedded in a 
polymeric matrix, resulting in an orthotropic composite material. Typically, several layers with 
different fiber orientations are stacked to obtain more efficient designs, leading to a laminated 
structure. Due to their complex mechanical behavior, the analysis of laminate structures requires 
the use of numerical methods, as the Finite Element Method (FEM) and Isogeometric Analysis 
(IGA). 

The design of laminated structures requires the determination of the number of layers and the 
characteristics of each layer (material, thickness and fiber orientation). Since there are a large 
number of possibilities, the use of optimization techniques is necessary in order to explore the full 
potential of laminated composite structures. However, the optimization of laminated composite 
structures has a high computational cost, especially when heuristic methods, as Genetic Algorithm 
or Particle Swarm Optimization (PSO), are applied. An alternative to reduce the processing time 
is to use surrogate models to approximate the structural responses. 

Surrogate models build an approximation of the structure behavior based on the structure 
responses evaluated by the numerical methods at a set of selected sampling points. Artificial 
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Neural Networks (ANN), Radial Basis Functions (RBF), Support Vector Regression (SVR) and 
Kriging are some surrogate models widely used (Wang and Shan, 2007; Forrester et al., 2008). 
The RBF approach is used in this work, since it stands out for its simplicity, accuracy and 
robustness, when compared with other options (Jin et al., 2001). 

The PSO algorithm is used for optimization since it is simple, efficient and can easily handle 
discrete variables (Barroso et al., 2017). A Sequential Approximate Optimization (SAO) approach 
is presented, where a sequence of RBF models is used to approximate the laminate responses. The 
accuracy of the proposed approach is assessed using a set of laminate optimization problems and 
very good results were obtained.  

2. RADIAL BASIS FUNCTIONS 
RBF models where proposed by Hardy (1971) to interpolate geographic data. Nowadays, this 

technique is widely used as a surrogate model (Jin et al., 2001; Forrester et al., 2008; Kitayama et 
al., 2011; Amouzgar and Strömverg, 2016). An RBF model can be written as: 

𝑓𝑓(𝐱𝐱) = �𝑤𝑤𝑖𝑖𝜑𝜑(�|𝐱𝐱 − 𝐜𝐜𝑖𝑖|�)
𝑛𝑛

𝑖𝑖=1

 (1) 

𝑤𝑤𝑖𝑖 are known as weights, 𝜑𝜑 are the Radial Basis Functions, 𝐜𝐜𝑖𝑖  ∈ ℝ𝑚𝑚, 𝑖𝑖 = 1, 2, … ,𝑛𝑛 are the basis 
centers, which can be taken from the sampling points by different techniques (Haykin, 2008; 
Amouzgar and Strömberg, 2016). In this work, all the sampling points are RBF centers. 

The RBF herein used was the Gaussian function 

𝜑𝜑(𝑟𝑟) = exp�−
𝑟𝑟²
𝜎𝜎²
� (2) 

where 𝑟𝑟 = ||𝒙𝒙 − 𝒄𝒄|| is the radial distance and 𝜎𝜎 is a parameter which controls the RBF shape. This 
parameter can be evaluated by cross-validation (Forrester et al., 2008) or by closed-form 
expressions depending on the distance between the sampling points (Kitayama et al., 2011). 

The simplest way to create an RBF model is by interpolating the sampling points 𝑓𝑓(𝐱𝐱𝑖𝑖) = 𝐲𝐲𝑖𝑖: 
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where 𝐻𝐻𝑖𝑖𝑖𝑖 = 𝜑𝜑 ���𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖��� , 𝑖𝑖, 𝑗𝑗 = 1, 2, … ,𝑛𝑛. The interpolation matrix is nonsingular provided 
that the sampling points (𝐱𝐱𝑖𝑖) are distinct (Forrester et al., 2008). However, this matrix tends to 
become bad conditioned when the sampling points are close to each other (Haykin, 2008). In 
addition, overfitting, in which the model only represents well the points included in the sampling 
points, can occur when many points are used (Forrester et al., 2008). Both problems can be avoided 
by finding the weights 𝑤𝑤𝑖𝑖 using the least squares approach considering a regularization parameter 
(𝜆𝜆) (Kitayama et al., 2011): 

𝐸𝐸 = ��𝐲𝐲𝑖𝑖 − 𝑓𝑓(𝐱𝐱𝑖𝑖)�
𝟐𝟐

+ �𝜆𝜆 𝑤𝑤𝒋𝒋𝟐𝟐
𝒏𝒏

𝒋𝒋=𝟏𝟏

𝒏𝒏

𝒊𝒊=𝟏𝟏

 (4) 

The error (E) minimization yields the linear system: 
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(𝐇𝐇T𝐇𝐇 + 𝜆𝜆𝐈𝐈)𝐰𝐰 = 𝐇𝐇T𝐲𝐲 (5) 

whose solution yields the weight vector (𝐰𝐰). The value 𝜆𝜆 = 10−3 was adopted in this work. 

3. SEQUENTIAL APPROXIMATE OPTIMIZATION 
The simplest approach to surrogate based optimization is to build a fixed surrogate model based 

on an initial sampling plan. Different Design of Experiments (DoE) techniques, as the Latin 
Hipercube Sampling and Hammersley Sequence Sampling (HSS), can be used to generate this 
sampling plan (Forrester et al., 2008; Amouzgar and Strömberg, 2016). The fixed surrogate is used 
to in all optimization iterations (or generations in GA). This approach has been successfully 
applied to several problems, but it requires a large sampling plan, which can be costly for problems 
with many design variables. Since the optimum solution is not known, costly numerical analysis 
are carried out to build an accurate surrogate model in regions far away from the optimum. 

A better alternative is to use the Sequential Approximate Optimization (SAO) approach (Schmit 
and Farshi, 1974; Haftka and Gürdal, 1991; Jones et al., 1998; Kitayama et al., 2011; Pan et al., 
2014; Chung et al., 2018). In this approach, an initial surrogate model is built based on a small 
sampling plan. This initial model is updated after each iteration of the optimization algorithm, 
including the optimum solution found in this iteration and possibly other new sampling points. 
This approach naturally generates more sampling points, and a better approximation, in the region 
close to the optimum. However, it can be shown that including only the optimum solution found 
at each iteration is not sufficient to find the global optimum solution and different infill strategies 
have been proposed to update the surrogate model (Forrester et al., 2008). 

In this work, the initial sampling is generated by the Hammersley Sequence Sampling 
(Amouzgar and Strömberg, 2016), the design optimization is carried-out is a Hybrid PSO-GA 
algorithm including special laminate operators (Barroso et al., 2017) and the surrogate model is 
updated using the infill strategy proposed by Kitayama et al. (2011).  

In order to balance the local and global approximation aspects, after each iteration not only the 
current optimal solution, but also new sampling points are evaluated using numerical methods and 
used to update the surrogate model. These points are found minimizing the density function 
(Kitayama et al., 2011) in order to include new sampling points where the model is poorly 
approximated. It is expected that adding new sampling points in sparse regions of the design space 
will lead to convergence to the global optimum (Kitayama et al., 2011).  

 

 
Figure 1. Density Function surface and level curves. 

The density function is approximated by a RBF model whose weights (𝐰𝐰DF) are evaluated using 
Equation (5) with 𝐲𝐲DF = [1, 1, 1, … , 1]𝑚𝑚x1𝑇𝑇 . This function is illustrated in Figure 1 for a sampling 
plan composed 30 points (blue circles) used to approximate the buckling load of a simply support 
square plate with balanced and symmetric layup subjected to a biaxial load. The plate has 8 plies 



4th Brazilian Conference on Composite Materials. Rio de Janeiro, July 22nd-25th, 2018 

4 
 

corresponding to two design variables (θ1, θ2). It can be noticed that minimizing this function 
results in the insertion of the point x = [90, 0] in the sample.  

In this work, the minimum of the density function is found using the standard PSO algorithm. 
The number of infill points to be included at each iteration is taken as n/2 (Kitayama et al., 2011). 
The general SAO algorithm used in this work is presented in Figure 2. For practical problems, the 
costlier step is the evaluation of the sampling points, since it involves the analysis of the composite 
structure by numerical methods. 

 

 
Figure 2. SAO flowchart.   

4. RESULTS 
The first example consists on a square laminated plate, with 8 plies, simply supported and 

subjected to biaxial loading (Figure 1). The design variables are the fiber orientation of each ply. 
Since the layup is symmetric and balanced, there are only two design variables (0 ≤ 𝜃𝜃1,𝜃𝜃2 ≤ 90). 
The objective is to find the fiber orientations (𝐱𝐱 = [𝜃𝜃1, 𝜃𝜃2]) that maximize the buckling load (𝜆𝜆𝑏𝑏): 

Find                            𝐱𝐱 = [𝜃𝜃1,𝜃𝜃2]  that 
maximize                𝜆𝜆𝑏𝑏 
with                         0° ≤ 𝜃𝜃𝑖𝑖 ≤ 90° 

(6) 
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Table 1 presents the geometrical parameters and material properties. Reddy (2004) presents a 
closed-form expression for the buckling load, which is exact for cross-ply laminates and give 
accurate results for angle-ply laminates with several plies. This solution will be adopted as the 
exact structural response to build the surrogate model.  

Table 1. Geometry and properties of Example 1. 

Geometry (m) Material: Carbon-Epoxy 

a b thickness 𝐸𝐸1(𝐺𝐺𝐺𝐺𝐺𝐺) 𝐸𝐸2(𝐺𝐺𝐺𝐺𝐺𝐺) 𝐺𝐺12(𝐺𝐺𝐺𝐺𝐺𝐺) 𝜈𝜈12 

0.508 0.508 1.272e-4 130.71 6.36 4.18 0.32 

An initial sample with 9 points was generated using the Hammersley Sequence Sampling. The 
optimization was carried out using 5 iterations and a swarm composed of 100 particles.  The final 
sample has 19 points due to the addition of 2 points at each iteration. The results presented in Table 
2 show that the same optimum layup was obtained by the exact and SAO approaches, with the 
former requiring 500 structural analysis and the latter only 19.  

Table 2. SAO optimization results. 

Approach Layup 𝜆𝜆𝑏𝑏 

Exact [±45 ± 45]𝑠𝑠 462.63 

SAO [±45 ± 45]𝑠𝑠 462.63 

The second problem corresponds to a simply support rectangular plate under biaxial loading 
(Figure 1) with Nx/Ny = 0.125 (Barroso et al., 2017). Table 3 presents the geometry and properties 
of this plate. Since a symmetric and balanced layup with 48 plies is adopted, the problem has 12 
design variables. The objective is to find the best layup (𝐱𝐱 = [𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃12]) that maximize the 
plate strength, considering buckling (𝜆𝜆𝑏𝑏) and material failure (𝜆𝜆𝑓𝑓) according to the Maximum 
Strain Criterion (Daniel and Ishai, 2004). The number of contiguous plies (Ncp) is limited to 4. 

Find                            𝐱𝐱 = [𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃12]  that 
maximize                𝜆𝜆𝑏𝑏 , 𝜆𝜆𝑓𝑓 
subjected to           1 − 𝑁𝑁𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
≤ 0 

with                         0° ≤ 𝜃𝜃𝑖𝑖 ≤ 90° 

(7) 

Table 3. Plate properties and geometry. 

Geometry (m) Engineering properties Ultimate strain 

a b thickness 𝐸𝐸1(𝐺𝐺𝐺𝐺𝐺𝐺) 𝐸𝐸2(𝐺𝐺𝐺𝐺𝐺𝐺) 𝐺𝐺12(𝐺𝐺𝐺𝐺𝐺𝐺) 𝜈𝜈12 𝜀𝜀1𝑢𝑢 𝜀𝜀2𝑢𝑢 𝛾𝛾12𝑢𝑢  

0.508 0.127 1.27e-4 138 9.0 7.1 0.3 0.008 0.029 0.015 

The initial sample used in SAO has 137 points.  This problem was optimized initially using 100 
particles and 20 iterations. Since the problem has 12 variables, 7 points were added to the sample 
at the end of each iteration, resulting in a final sample with 277 points. The obtained results are 



4th Brazilian Conference on Composite Materials. Rio de Janeiro, July 22nd-25th, 2018 

6 
 

presented in Table 4. It can be noted that exact and SAO layups are not the same, but the difference 
in the buckling load (𝜆𝜆𝑏𝑏) was only -2.11%, on the other hand the difference in failure criterion was 
12.18%. 

Table 4. Optimization results for 20 and 50 iterations.  

Approach Layup 𝜆𝜆𝑏𝑏 𝜆𝜆𝑓𝑓 

Kogiso et al. (1994)  [±455 04  ± 45 04 902 02]𝑠𝑠 14659.58 13518.66 

SAO (20 iterations) [±455 02  ± 45 02 902 04  ± 45]𝑠𝑠 14969.50 11871.10 

SAO (50 iterations) [±455 ( 04  ± 45)2 02]𝑠𝑠 14680.00 13458.30 

Better results were obtained optimizing the problem using 50 iterations, as shown in Table 4. 
The exact and SAO layups are still different, but the buckling load difference decreases to only 
0.13% and the failure load difference decreases to only 0.44%. Therefore, SAO results can be 
improved increasing the number of iterations, since more sampling points are included, leading to 
a better surrogate model. Obviously, the computational cost also increases due to the additional 
structural analysis. 

 
Figure 3. Laminated cylindrical shell. 

 

The third problem consists in the stiffness maximization of a laminated cylindrical shell (Figure 
3) with 40 plies (Barroso, 2015). Table 5 presents the shell properties. The problem has 10 design 
variables since a symmetric and balanced layup was adopted. The shell stiffness can be maximized 
by minimizing the vertical displacement (w) of point b. In addition, the required safety factor (SF) 
is equal to 1.5. The number of contiguous plies (Ncp) is limited to 4. The optimization problem is 
written as: 

Find                             𝐱𝐱 = [𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃10]       that 
minimize                      𝑤𝑤𝑏𝑏 
subjected to                  𝑁𝑁𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
− 1 ≤ 0 

                                     1 − 𝑆𝑆𝑇𝑇𝑇𝑇
𝑆𝑆𝑆𝑆

≤ 0 
with                             0° ≤ 𝜃𝜃𝑖𝑖 ≤ 90° 

(8) 

The Isogeometric Analysis (IGA) was used to evaluate the displacements and stresses considering 
a 3D model. The Tsai-Wu criterion was adopted to evaluate the safety factor against material 
failure (STW). 
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Table 5. Geometrical and engineering properties. 

g (kN/m²) R (m) L (m) 𝜃𝜃 (°) t (cm) 𝑁𝑁𝑙𝑙𝑙𝑙𝑚𝑚 𝑡𝑡𝑙𝑙𝑙𝑙𝑚𝑚  (cm) 𝐸𝐸1 (GPa) 

45 3.0 6.0 40 3.0 40 0.075 147 

𝐸𝐸2 (GPa) 𝐸𝐸3 (GPa) 𝜈𝜈12 𝜈𝜈13 𝜈𝜈23 𝐺𝐺12 (GPa) 𝐺𝐺13 (GPa) 𝐺𝐺23 (GPa) 

10.3 10.3 0.27 0.27 0.54 7.0 7.0 3.7 

The reference solution, where all designs were analyzed using IGA, was obtained using 49 
particles and 30 iterations. The SAO method used the same number of particles, but considered 
initially only 20 iterations. The initial sample had 99 points. Since the problem has 10 variables, 6 
points were added to the sample at the end of each iteration, resulting in a final sample with 219 
points. The results are presented in Table 6.  

Different layups were obtained by the exact and SAO approaches, but the differences were 
negligible for the displacement and safety factor. Increasing the number of SAO iterations to 30 
lead to even closer results. In this case, the use of SAO leads to a reduction of 82.77% in the 
elapsed time. Therefore, SAO makes feasible the use of optimization techniques in the design of 
complex laminated structures. 

Table 6. SAO optimization results.  

Approach Layup Time  𝑤𝑤𝑏𝑏  𝑆𝑆𝑇𝑇𝑇𝑇 

IGA (30 iterations) [(904  ± 45)2 04  ± 45 02]𝑠𝑠 12306 s 11.58 2.12 

SAO (20 iterations) [±45 904 ±453 04  ± 45 02]𝑠𝑠 1342 s 12.09 2.05 

SAO (30 iterations) [902 (902  ± 45)2  ± 45 04  ± 45 02]𝑠𝑠 2120 s 11.63 2.10 

5. CONCLUSION  
This work studied the use of Sequential Approximate Optimization (SAO) to laminate 

composite structures. In this SAO approach, the HSS sampling technique was used to generate the 
initial sample and Radial Basis Functions (RBF) were used as a surrogate model. The surrogate 
model is updated at each iteration including the iterative optimum solution and additional points 
in regions sparsely sampled of the design space. The additional sampling points are found 
minimizing a RBF density function using the PSO algorithm. 

Optimization problems with both small and large number of design variables were solved and 
very good results were found. The efficiency of the SAO was demonstrated by the large reduction 
in the optimization time obtained when numerical methods are required for structural analysis. The 
accuracy of SAO results can be increased using a large number of optimization iterations. 
Therefore, the obtained results depend on the available computer resources and project schedule 
constraints. Thus, SAO is a promising technique to allow the design optimization of real-world 
laminated composite structures. 
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